Leveraging Containers and OpenStack

A Comprehensive Review

Introduction

Imagine that you are tasked to build an entire private cloud infrastructure from the ground up. You have a limited
budget, a small but dedicated team, and are asked to pull off a miracle.

A few years ago, you'd build an infrastructure with applications running in virtual machines, with some bare-metal
machines for legacy applications. As infrastructure has evolved, virtual machines (VMs) enabled greater levels of
efficiency and agility, but VMs alone don’t completely meet the needs of an agile approach to application deployment.
They continue to serve as a foundation for running many applications, but increasingly, developers are looking toward
the emerging trend of containers for leading-edge application development and deployment because containers offer
increased levels of agility and efficiency.

Container technologies like Docker and Kubernetes are becoming the leading standards for building containerized
applications. They help free organizations from complexity that limits development agility. Containers, container
infrastructure, and container deployment technologies have proven themselves to be very powerful abstractions that can
be applied to a number of different use cases. Using something like Kubernetes, an organization can deliver a cloud that
solely uses containers for application delivery.

But a leading-edge private cloud isn’t just about containers, and containers aren’t appropriate for all workloads and use
cases. Today, most private cloud infrastructures need to encompass bare-metal machines for managing infrastructure,
virtual machines for legacy applications, and containers for newer applications. The ability to support, manage and
orchestrate all three approaches is the key to operational efficiency.

OpenStack is currently the best available option for building private clouds, with the ability to manage networking,
storage and compute infrastructure, with support for virtual machines, bare-metal, and containers from one control
plane. While Kubernetes is arguably the most popular container orchestrator and has changed application delivery, it
depends on the availability of a solid cloud infrastructure, and OpenStack offers the most comprehensive open source
infrastructure for hosting applications. OpenStack’s multi-tenant cloud infrastructure is a natural fit for Kubernetes, with
several integration points, deployment solutions, and ability to federate across multiple clouds.

In this paper, we’'re going to explore how containers work within OpenStack, examine various use cases, and provide an
overview of open source projects, from OpenStack and elsewhere, that help make containers a technology that’s easily
adopted and utilized.

Bare Metal Infrastructure Cloud
DpenStack installation OpenStack APl
........ -
[— _
- [] Chits L3 Clowid Pravigder
L Corkaina Combabmie Pl e Dpenstack
Sereers Austime R T T . I I -
Dodker [LIE Ansisli ! K : :
i = 1
Cinder o] EEELII :
—_— H ¥
{amairer images :
Haila § Laci / LXE H
Oetavin [LE&aS afamaaad |
L Hurye |
"'E‘ = ; Callea
: P
Openitack ¥ Newtron Y - -
Irznic E 1 o
T Natvanik Dusrlay '—_I'.—" fir=d
Calico | Kurgr Mag
Saruery)
Bare Matal
O v
T — P S ————

I. A High Level View of Containers in OpenStack

There are three primary scenarios where containers and OpenStack intersect.

The first scenario, called infrastructure containers, allows operators to leverage containers in a way that improves cloud

https://www.docker.com/open-source-0
https://kubernetes.io/
https://openstack.org/

infrastructure deployment, management, and operation. In this scenario, containers are set up on a bare-metal
infrastructure, and are allowed privileged access to host resources. This access allows them to take direct advantage of
compute, networking, and storage resources that container runtimes are typically trying to hide from users. The
containers isolate the often complex set of dependencies that each application depends on, while still allowing the
infrastructure applications to directly manage and manipulate the underlying system resources. When the time comes to
upgrade an service, the upgrade can be handled without changes in dependencies disrupting co-located services.

Modern versions of OpenStack have embraced this infrastructure container model, and it’'s now normal to manage an
entire lifecycle of an OpenStack deployment with a combination of orchestration tooling and containerized services.
Infrastructure containers enable operators to use container orchestration technologies to solve many issues, particularly
around rapidly iterating/upgrading existing software including OpenStack. Running OpenStack within containers helps
operators to solve Day 2 challenges, including adding new components for services, upgrading versions of software
quickly, and rapidly rolling updates across machines and data centers. This approach brings the agility of containers to
the problem of OpenStack deployment and upgrades.

The second scenario is concerned with hosting containerized application frameworks on cloud infrastructure. These can
include Container Orchestration Engines (COEs) like Docker Swarm and Kubernetes, or lighter-weight container-focused
services and serverless application programming interfaces (APIs). Whether on bare-metal or VMs, the OpenStack
community has worked to ensure that it's possible to deliver containerized applications on a secure, tenant-isolated cloud
host. This scenario is facilitated by drivers that allow projects like Kubernetes to directly take advantage of OpenStack
APIs for storage, load-balancing, and identity. It also includes APIs for provisioning managed Kubernetes clusters and
application containers on demand. With these capabilities, development teams can write new containerized applications
and quickly provision Kubernetes clusters on OpenStack clouds. It's a complete application lifecycle solution that gives
them the resources needed to develop, test, and debug their code, with robust automation to deploy their applications
into production.

In the final scenario, we consider the interactions between independent OpenStack and COE deployments, and in this
paper particularly Kubernetes clusters. Consistency and interoperability of APIs across both OpenStack and Kubernetes
clusters is the primary source of success for this scenario. For example, it’s possible for Kubernetes to directly attach to
OpenStack Cinder hosted volumes, use OpenStack Keystone as an authorization and authentication backend, or connect
to OpenStack Neutron as a network overlay with OpenStack Kuryr. Conversely, it’s possible for an OpenStack cloud to
share the same network overlay as a Kubernetes cluster with Neutron drivers for projects like Calico. The third scenario is
less focused on how a cloud service is hosted (be it Kubernetes or OpenStack), and more on how independent services
interact.

Il. OpenStack Container Integration Points
Deploying OpenStack Infrastructure on Containers

As noted in the introduction, the deployment and management of OpenStack has changed significantly with the rise of
containers, because containers unlock new approaches to managing infrastructure code. Previous management
strategies required either the creation and maintenance of heavyweight golden machine images, or using brittle state-
maintaining configuration-management systems. Each approach comes with complexities and restrictions. Adding to the
degree of difficulty is the management of a collection of services that all require their own dependencies that change
from release-to-release. Without some form of application isolation, solving for the dependencies becomes difficult if not
impossible.

Infrastructure containers enable new OpenStack deployment projects to strike a balance between the two while elegantly
solving the dependency problem. Using lightweight, independent, self-contained, and typically stateless application
containers, a cloud operator gains tremendous flexibility when deploying a complex control plane. Combined with a
container runtime and an orchestration engine, infrastructure containers make it possible to quickly deploy, maintain,
and upgrade complex and highly available infrastructure.

In building an OpenStack cluster, there are several dimensions for choosing deployment technologies. An operator could
choose Linux Containers (LXC) or Docker for their base containers, use pre-built or custom-built application containers,
and select either traditional configuration-management systems for orchestration or a more modern approach like
Kubernetes. Table 1 summarizes the existing OpenStack deployment projects and their underlying technologies.

https://docs.openstack.org/cinder/latest/
https://docs.openstack.org/keystone/latest/
https://docs.openstack.org/neutron/latest/
https://docs.openstack.org/kuryr/latest/
https://www.projectcalico.org/
https://linuxcontainers.org/

Container Type

OpenStack-Ansible LXC OSA LXC Containers Ansible

Kolla-Ansible Docker Kolla Containers Ansible

Triple-O Docker Kolla Containers Ansible
OpenStack-Helm Docker Kolla Containers Kubernetes and Helm

Loci Containers

Underlying each of these deployment systems are different approaches to building a set of containers for the OpenStack
code and supporting services. The OpenStack Ansible (OSA) and Kolla projects provide their own project-hosted build
systems, while LOCI focuses on building project application containers, without a specific orchestration system in mind.
At a high level, the differences are:

1. OSAis unigue in that it relies on lower-level LXC containers, and has a custom build system for creating LXC
application containers.

2. The Kolla build system produces Docker containers, one for each service, along with supporting containers for
initializing and managing an OpenStack deployment. Kolla containers are highly configurable, with a choice of base
operating system, source or package installations, and a template engine for even further customization.

3. The final option for building OpenStack application containers is LOCI. LOCI also builds Docker containers, and
delivers one container for each project. LOCI is focused on producing compact and secure containers quickly, for all
common distributions, with the expectation that they will be used as a foundation to build upon by the deployment
system.

Bare-Metal Infrastructure - OpenStack and Solving the Bootstrap Problem

At the foundation of every cloud, there exists a data center of bare-metal servers that host the infrastructure services.
Even “serverless computing” is running software on a cloud on hardware in a data center. The problem of how to
bootstrap hardware infrastructure is a critical problem that OpenStack software is uniquely qualified to address in a way
that gives cloud-like qualities to bare-metal management.

OpenStack Ironic provides bare-metal as a service. As a standalone service it can discover bare-metal nodes, catalog
them in a management database, and manage the entire server lifecycle including enrolling, provisioning, maintenance,
and decommissioning. When used as a driver to OpenStack Nova and combined with the full suite of OpenStack services,
it delivers a powerful, cloud-like service for managing your entire bare-metal infrastructure.

This raises the question: How does one bootstrap OpenStack services to manage bare-metal infrastructure? One typical
solution is to use the same container-based installation tools as described in the previous sections to create a seed
installation. This seed, often called an ‘undercloud’, can be used to entirely automate the management of a bare-metal
cluster as if it were a virtualized cloud.

This opens up an opportunity to not just run OpenStack virtualization on a bare-metal cloud, but to also run bare-metal
Kubernetes-only installations that can take full advantage of the identity, storage, networking, and other cloud APIs
available through OpenStack services.

Delivering Container-Based Applications on OpenStack

Both infrastructure containers and bare-metal infrastructure are important, but when most people think of containers,

they’re thinking of application containers. The isolation, encapsulation, and ease of maintenance offered by containers
makes them an ideal solution for delivering applications. However, containers still need a host platform to serve them

from, whether bare-metal, public cloud, or private cloud.

Kubernetes is a platform for delivering applications, and works best with cloud-APIs that can automate the delivery of
critical infrastructure such as permanent storage, load-balancers, networks, and dynamic allocation of compute nodes.
OpenStack delivers cloud infrastructure, whether as an on-prem private cloud or through any of the available public or
managed OpenStack clouds.

OpenStack was one of the first upstream cloud providers for Kubernetes, with an active team of developers maintaining
the "Kubernetes/Cloud Provider OpenStack" plugin. This plugin allows Kubernetes to take advantage of Cinder block
storage, Neutron and Octavia Load Balancers, and direct management of compute resources with Nova. Using the
provider is as simple as deploying the driver to your Kubernetes installation, setting a flag to load the driver, and
providing your local user cloud credentials.

https://docs.openstack.org/ironic/latest/
https://docs.openstack.org/nova/latest/
https://github.com/kubernetes/cloud-provider-openstack
https://docs.openstack.org/octavia/latest/

There are a number of solutions for installing Kubernetes and other application frameworks on top of OpenStack. One of
the easiest ways to deliver container frameworks is to use Magnum, an OpenStack project that provides a simple API to
deploy fully managed clusters backed by a choice of several application platforms, including Kubernetes. It's an example
of a Kubernetes deployment system that relies on OpenStack APIs and cloud provider plugin. For example, right now it's
being used to manage over 200 independent and federated Kubernetes installations on CERN’s OpenStack on-site cloud,
as well as on partner clouds. If you don’t have the Magnum API available to you in your preferred OpenStack cloud, you
can use any other Kubernetes installation tools such as the kubeadm, Kubernetes Anywhere, Cross-Cloud, or Kubespray,
to install and manage your Kubernetes cluster on OpenStack. Because each uses standard Kubernetes, it’s easy to
enable the cloud provider interface to take advantage of storage and load balancing.

Zun, another OpenStack project, offers a lighter-weight container service APl for managing individual containers without
the need for managing servers or clusters. An OpenStack-hosted Kubernetes cluster is elastic because it can be
dynamically resized by adding or removing cloud resources to the cluster directly through the Nova API. Alternatively,
Kubernetes can serve as a container backend to OpenStack Zun, turning over the management of the pod infrastructure
to Zun. It offers a lighter-weight and multi-tenant container service API for running containers without the need for
directly creating servers. Direct integration with Neutron and Cinder are used to provide networking and volumes for
individual containers.

Finally, the Qinling project offers "Function as a Service" that aims to provide a platform to support serverless functions,
similar to Lambda, Azure Functions, or Google Cloud Functions. It further abstracts the management of containers, and
allows users to accelerate development with an event-driven, serverless compute experience that scales on demand.
Qinling supports different container orchestration backends like Kubernetes and Docker swarm, a variety of popular
function package storage backends like local storage and OpenStack Swift.

Kata Containers - Secure Applications through Virtualization

Kata Containers, a new open source project, is a novel implementation of a lightweight virtual machine that seamlessly
integrates within the container ecosystem. Kata Containers are as light and fast as containers and integrate with the
container management layers - including popular orchestration tools such as Docker and Kubernetes (k8s) - while also
delivering the security advantages of VMs. Kata Containers adhere to the Open Container Initiative (OCI) standard, which
the OpenStack Foundation is an active member of. Kata Containers is hosted at the OpenStack Foundation, but is a
separate project from the OpenStack project with its own governance and community.

The industry shift to containers presents unique challenges in securing user workloads within multi-tenant environments
with a mix of both trusted and untrusted workloads. Kata Containers uses hardware-backed isolation as the boundary for
each container or collection of containers in a pod. This approach addresses the security concerns of a shared kernel in a
traditional container architecture.

Kata Containers is an excellent fit for both on-demand, event-based deployments such as continuous
integration/continuous delivery, as well as longer running web server applications. Kata also enables an easier transition
to containers from traditional virtualized environments, as it supports legacy guest kernels and device pass through
capabilities. Kata Containers deliver enhanced security, scalability and higher resource utilization, while at the same time
leading to an overall simplified stack.

Virtual Machine Lightweight VM Lightweight VM

App App

App App

Namespace Namespace Namespace Namespace

Containers in Cloud Today Kata Containers

(Shared kernel, isolation within namespace) A lightweight virtual machine isolates each
container/pod and provides a separate
kernel for each container/pod.

Side-by-Side OpenStack and Kubernetes Integrations

https://docs.openstack.org/magnum/latest/
http://openstack-in-production.blogspot.com/2017/01/containers-on-cern-cloud.html
https://github.com/kubernetes/kubeadm
https://github.com/kubernetes/kubernetes-anywhere
https://github.com/crosscloudci/cross-cloud
https://github.com/kubernetes-incubator/kubespray
https://docs.openstack.org/zun/latest/
https://docs.openstack.org/swift/latest/
https://katacontainers.io/
https://www.opencontainers.org/

One of the primary benefits of choosing open source platforms is in the stability of interfaces across standard
deployments of those platforms. Both the OpenStack Foundation and the Cloud Native Computing Foundation (CNCF)
maintain interoperability standards for OpenStack clouds and Kubernetes clusters, guaranteeing that libraries,
applications, and drivers will work across all platforms regardless of where they are deployed. This creates opportunities
for side-by-side integrations, allowing both OpenStack and Kubernetes to take advantage of the resources provided by
the other.

The OpenStack Special Interest Group (SIG-OpenStack) in the Kubernetes community maintains the Cloud Provider
OpenStack plugin. In addition to cloud provider interface for running Kubernetes on OpenStack, it also maintains several
drivers that allows Kubernetes to take advantage of individual OpenStack services. These drivers include:

e Two standalone Cinder drivers. A Flex Volume driver uses an exec-based model to interface with drivers, and a
Container Storage Interface (CSl) driver which uses a standard interface for container orchestration systems to
expose arbitrary storage systems to their container workloads. With support for over 70 storage drivers, these
drivers make it possible to interface a wealth of battle tested proprietary and open source storage devices through a
single Cinder API.

¢ A webhook-based authentication and authorization interface to Keystone. Each mode, authentication and
authorization, can be configured independently of one another. Though a work in progress, the interface supports a
soft-multi-tenancy that backs Kubernetes RBAC with OpenStack Keystone.

Both OpenStack and Kubernetes support highly dynamic networking models that are backed by a variety of drivers.
Because of these standard network interfaces, it's easy to build standalone OpenStack and Kubernetes clusters with
strong network integrations. Within OpenStack, the Kuryr project produces a Common Network Interface (CNI) driver that
delivers Neutron networking to Docker and Kubernetes. On the flip side, there projects like Calico offer Neutron drivers,
providing direct access to popular Kubernetes network overlays through standard Neutron APIs.

I1l. Case Studies

Many members of the OpenStack community are contributing new code to various OpenStack projects relevant to
containers, evaluating the implications and benefits of containers, and using containers in production to solve challenges
and unlock new capabilities. This section highlights some of the most interesting case studies.

AT&T

AT&T, one of the largest telecommunications companies in the world, leverages container technology to deploy and
manage OpenStack itself, relying on infrastructure containers to generate simplicity and efficiency, with the aim of
building their 5G infrastructure on containerized OpenStack.

To accomplish their goals, AT&T is using the OpenStack-Helm project to orchestrate LOCI-based OpenStack images
across a Kubernetes cluster, also leveraging Kubernetes, Docker, and the core OpenStack services. They're also using
Bandit, Tempest, Patrole, and many other OpenStack projects. AT&T is also collaborating in the community to introduce a
collection of undercloud projects called Airship, which will provision clouds from bare-metal to production-grade
Kubernetes running OpenStack workloads.

Reglonal Controller Cloud Region
Data Plane

Kubernotes

4

e

—>
Image Regi
bl et Docker
Host
Site Decilaration
Anacis Control Plane

Kubernetes Kubernates

__\
Source Code K&5 api, crri, .. <—k_—

" 505 (caph)
Trigger =
chico = Site Lifocycle API's CNI {calica)
P
Site Lifecy B >
Opevations = N N Tiller
L
I Autherticale
cvcoofm« 25l Docker
MukiRegion Orohesiralor H
ost
Hest

AT&T is finding that containerization allows them to shift traditional deployment-type activities far to the left, and to
validate them using CI/CD. Kubernetes additionally provides massive scalability and resiliency, as well as hooks to allow
OpenStack-Helm to declaratively configure operational behavior, inject configuration, and accomplish rolling upgrades
and updates without impacting tenant workloads.

Leveraging container technology to deploy and manage OpenStack shouldn’t have much obvious impact on tenants —
with the exception that they will have a more highly resilient platform, and will be able to get cloud features more

http://www.airshipit.org/

frequently and with minimal interruption. AT&T’s operations teams new experience will shift more of their efforts to
defining the declarative configuration for a site, and to let the Kubernetes-oriented automation carry out the deployments
themselves.

AT&T aims to use this architecture to power the virtual network functions that form the backbone of its consumer and
business-focused products and services. The initial use case for AT&T's containerized Network Cloud will be the initial
deployment of VNFs for the emerging 5G networking. OpenStack has been, is, and will be an excellent fit for AT&T’'s VNF-
focused cloud use cases. Containerization is simply an evolution that allows AT&T to deploy, manage, and scale their
OpenStack infrastructure in a more reliable, rapid, zero-touch manner.

Operationally, AT&T is still testing this approach but has committed to getting 5G service into production before the end
of the year. OpenStack and container technology will form the backbone of this service, which is strategically important
for AT&T's millions of users. Deploying their 5G service will demonstrate the relevance of OpenStack and containers in a
massively distributed production environment.

Cern

CERN, the European Organization for Nuclear Research, enables physicists and engineers to probe the fundamental
structure of the universe, using the world’s largest and most complex scientific instruments to study the basic
constituents of matter - the fundamental particles. The CERN cloud provides physicists with compute resources for
scientific computing, analyzing data coming from the Large Hadron Collider and other experiments.

CERN has been running OpenStack in production since 2013 and is now providing services for virtual machines, bare-
metal and containers within a single cloud. Containers run on either virtual machines or bare-metal depending on the use
cases, all provisioned via OpenStack Magnum. A selection of different container technologies are available including
Kubernetes, Docker Swarm and DC/OS.

CERN is currently running 250 container clusters provisioned through Magnum on top of OpenStack.

Available Used Available Used Available Used

312.5 Kcores 281.7 K cores 910.4 TiB ram 792.4 TiB ram 15.0 PiB aisk 7.1 PiB aisk

Users Projects VMs Magnum clusters Hypervisors images
3220 4243 36818 250 9012 2869

Yolumes Volume size Flleshares Fileshares size

5623 1.77 PiB 139 155 TiB

CERN'’s OpenStack cloud gives users self-service access to request a configured container engine with a couple of
commands or via a web GUI. This allows rapid utilization of the technologies and can scale to 1000s of nodes if needed.
Best practice configurations are available with built in monitoring and integration into CERN storage and authentication
services.

Running this resource pool efficiently, scaling it without needing extra operations manpower requires consistent
management processes and tools. Adding containers via Magnum on top of OpenStack enabled the service to use the
automation previously developed, such as hardware repair processes and consistent authorisation models while
supporting rapidly reallocation of resources depending on user needs.

As a publicly funded laboratory, open source solutions such as Kubernetes and OpenStack provide a framework to
collaborate with other organisations and give back to the communities. CERN has worked with a number of vendors
through the CERN openlab framework, such as Rackspace and Huawei, to provide clouds at scale with functionalities like
Magnum and federation. These experiences are also shared through OpenStack Special Interest Groups, with other
sciences such as the Square Kilometer Array (SKA), public presentations such as Kubecon Europe and blogs such as the

OpenStack in Production.

https://openlab.cern/
http://openstack-in-production.blogspot.fr/

Nova Instance #n Controller Node

Cloud
—" " iagnum -
e Init ‘-\ \ AP "‘ Ll
= ymode . . |
— .
\ l

/4 Kubernetes/Swarm — II I
|
|
| ol €

Docker Containers ‘ i lill

||I | ! / II"'\,_ I

. ;
\ 1 N
- Docker }" » OpenStack Heat

F 9 A A
- H -x\ ‘ I I
\ | y

Micro OS (Fedora Atomic, Core0S)

“~# Nova Neutron | | Glance Cinder

At CERN, several workloads run within containers provisioned by Magnum, these include:

e Reana/Recast
o These tools provide a framework for executing reusable workflows in High Energy Physics. Containers offer the
ability to package the analysis software and data in a single, easily shareable unit as well as easy scaling out
both on-premises and using external resources. Work is scheduled as Kubernetes jobs based on Yadage
Workflows supporting analysis and data preservation activities.
Spark as a Service
o Recently, Kubernetes was added as a resource manager for Spark. Spark can spawn drivers and executors as
pods and Kubernetes is responsible for the scheduling and lifecycle. A team in the CERN IT department is
developing a service where users can create Kubernetes clusters on demand with OpenStack Magnum and
deploy Spark on Kubernetes, providing all the required integrations with CERN’s specialized filesystems and
data sources in a secure way. Users with a few commands can effectively create a Spark deployment with the
desired size, only for the time they need it and with the option to scale up or down their deployment while
running.
LHC experiment detector trigger simulation for LHC upgrade
o The LHC is due to be upgraded to higher luminosity during the 2020s which requires significant enhancements
in the experiment trigger farms which filter the collisions. Large scale Kubernetes clusters have been created to
simulate the different approaches for the ATLAS experiment and validate the design, resulting in some fine
tuning of Kubernetes and OpenStack components.
Gitlab Continuous Integration Runners
o Gitlab enables users to build CI/CD jobs and execute them on shared or project specific runners. CERN users
can leverage the CERN Container Service to test and build software, build and publish container images and
documentation or set complex pipelines managing the full application lifecycle, including automated
deployments into different environments.
Federated Kubernetes compute farms with external clouds
o CERN uses federations of Kubernetes clusters to support multi-cloud operations. Multiple clusters can be
seamlessly integrated across clouds of varying technologies, including AWS, GCE and OpenStack clouds such
as CERN and the T-Systems Open Telekom Cloud as demonstrated at Kubecon 2018.

Integrating virtual machines, container engines and bare-metal under a single framework provides for easy views on
usage accounting, ownership and quota. Manila storage drivers for Kubernetes allow transparent provisioning of file
shares. This supports both the IT department in capacity planning and the experiment resource coordinators in defining
the priorities for their working groups. Resource management policies such as reassignment or expiry of resources on
departure of staff are handled in consistent workflows.

SK Telecom

SK Telecom (SKT), South Korea’s largest telecommunications operator, has been exploring optimized approaches for

deploying OpenStack on Kubernetes with the aim of putting core business functions on containerized OpenStack by the
end of 2018. SKT leverages Kolla and Openstack-Helm. with deployments automated by Kubespray. SKT devotes nearly
100% of it's development efforts to OpenStack-Helm, and works closely with AT&T to make OpenStack-Helm successful.

SKT has also incorporated other tools into their OpenStack on Kubernetes efforts. For logging, monitoring, and alarms,
they are using Prometheus and Elasticsearch, Fluent-bit, and Kibana, all of which are default reference tools in the
OpenStack-Helm community. SKT combines all of these into a single closed-integrated solution called TACO: SKT All
Container OpenStack.

https://github.com/recast-hep
http://atlas.cern/
https://www.youtube.com/watch?v=2PRGUOxL36M
https://prometheus.io/
https://www.elastic.co/
https://fluentbit.io/
https://www.elastic.co/products/kibana

Container Orchestration OpenStack APls
(Kubernetes, OpenStack-Helm)

OpenStack Control Planes

R) (Containerized OpenStack)
OpenStack Containerization \
e 3 £31 B3 B3 B3
ClICD & Testing Underlying Platform (Kubernetes)

RS, TiyTTSIIOSE 800 VIONNSY) Containerized OpenStack Lifecycle Management

SKT specifically emphasizes an automated continuous integration/continuous delivery (CI/CD) pipeline around
containerized Openstack on Kubernetes. SKT’s Cl system consists of Jenkins, Rally, Tempest, Docker Registry, as well as
Jira and Bitbucket. SKT also developed an open source tool called Cookiemonster, a chaos-monkey like resiliency test tool
for Kubernetes deployment that performs resiliency tests for their Cl pipeline.

With every change, SKT automatically builds and tests both the OpenStack containers and Helm charts. Daily, they
automatically install a highly available OpenStack deployment with three control nodes and two compute-nodes, run 400
test cases from Tempest against it to validate the services, and finally run resiliency testing with Cookiemonster and
Rally. The complete ClI system is illustrated in the following diagram:

Docker registry

Upstream
repository

| 01.0 ”nr.mdd” N.OO

OpenStack
Unit Test

() e
kolla —@— skt-kolla (koila)
openstack-helm -@—'—| skt-helm L
—— Unit Test
(helm)
kubespr:ﬁr skt-kubespray

Mirror repository Wirapper repository

Integration P "
romote
Test

iy

Helm chart repository

docker image

helm chart

o]

SKT automates its deployments with Armada, a sub-project of Airship, which was introduced in the community as a new
open infrastructure project by AT&T. SKT is collaborating in community to provide enhancements to the project based on
their production uses.

In practical use, SKT has already seen a large number of benefits from deploying OpenStack on Kubernetes including:

Simple and Easy Installations.

Cluster Auto-Healing.

An ability to upgrade and update OpenStack with minimal impact to running services.

Rapid adoption of advanced release methodologies, including blue-green deployment, canary releases.
Complete automated management of Python dependencies through container isolation.

Secure secret and configuration management.

Fast and flexible roll-outs of cluster updates.

SKT is still testing the approach, but is actively moving towards running their OpenStack-Helm deployments in
production. By end of this year, SKT will have at least three production clusters, with the fourth and largest coming online
in 2019. These use cases include:

Big Data platform (planned to go live Q4 2018)

A virtual desktop infrastructure platform (production ready by Q4 2018)

A General purpose Internal Private Cloud (planned to go live Q3 2018)

A telco network infrastructure built on virtual network functions (planned to open sometime in 2019)

SKT is also trying to improve automation on telecom infrastructure operation by utilizing containerized VNFs and
leveraging containers’ auto healing and fast scale-out features. In order to allow interaction between virtual machine
based VNFs and containerized VNFs, Simplified Overlay Network Architecture (SONA), which is a virtual network solution
for OpenStack, will support communication between VMs and containers. SONA uses the Kuryr project for integration of
OpenStack and Kubernetes, and it optimizes network performance using software defined networking technologies.

Overall, SKT is finding that Kubernetes helps solve many of the complexities of deploying and operating OpenStack.
Simplifying OpenStack gives them a powerful approach to deliver advanced infrastructure innovation for the 5G era.

https://jenkins.io/
https://docs.openstack.org/developer/rally/
https://docs.openstack.org/tempest/latest/
https://github.com/sktelecom-oslab/cookiemonster
https://github.com/att-comdev/armada
http://www.airshipit.org/
https://wiki.onosproject.org/display/ONOS/SONA%3A+DC+Network+Virtualization

Focusing efforts on Openstack on Kubernetes dramatically increased their internal capability to deal with the evolving
shift toward microservices in containers and become a critical infrastructure for delivering Artificial Intelligence, Internet
of Things, and Machine Learning.

Superfluidity

The Superfluidity project is made up of 18 partners from 12 European countries. It aims to enhance the ability to
instantiate services on-the-fly, run them anywhere in the network (core, aggregation, edge) and shift them transparently
to different locations. SUPERFLUIDITY is a European Research project (Horizon 2020) trying to build the basic
infrastructure blocks for 5G networks by leveraging and extending well known open source projects. SUPERFLUIDITY will
provide a converged cloud-based 5G concept that will enable innovative use cases in the mobile edge, empower new
business models, and reduce investment and operational costs.

To pursue these goals, the project consortium is shifting away from legacy, VM-based applications to Cloud Native
containerized applications. Kuryr serves as a bridge between OpenStack virtual machines, and Kubernetes and OpenShift
containerized services.

The project makes use of ManagelQ as a central networks function virtualization orchestrator (NFVO), Ansible for
Application deployment and lifecycle management, OpenStack services including Heat, Neutron, and Octavia, and
Kubernetes through OpenShift for VMs and containers integration.

.-'/f— _m _\-.
TOSLCA
NEVO L)
|
| I |
L :
VIRTUAL MACHINES e sy WO, R

(old-fashion and Unikernels) : : CONTAINERS

INFRASTRUCTURE ~ ¢en _:}\KVM G)VS & icri-o @ceph

it

By leveraging Ansible playbooks executed from the ManagelQ appliance, SUPERFLUIDITY offers a common way to deploy
applications. These applications in turn use the cloud orchestration functionality provided by OpenStack Heat templates
and OpenShift templates.

The consortium deploys 5G cloud radio access networks (CRAN) and mobile edge computing (MEC) components within
containers. It also deploys high throughput applications like video streaming on top of the distributed infrastructure.

Shifting toward a cloud native approach to application delivery allows for rapid and resilient SUPERFLUIDITY installations.
It enables a smooth transition from VM-based applications and components to containers, while retaining the versatility
to enable VMs for some specific applications. Examples of these applications are special security protections or network
acceleration required by single-route input/output virtualization (SRIOV).

In scale performance testing, SUPERFLUIDITY was able to launch approximately 1000 pods at a rate of 22 pods/second
(with time measured from creation to running). This remarkable performance was achieved by running OpenShift on VMs
managed by OpenStack, with Kuryr acting as a pod network driver to avoid double-encapsulation performance hits.

IV. Conclusion

Over the past few years, as containers have become an important tool for developers and organizations alike, OpenStack
has leveraged its modular design and expansive community to integrate container technologies at many levels. This can
be seen both by the various organizations bringing containers and OpenStack into production, and the number of projects
that work alongside containers to deliver new capabilities. The OpenStack Foundation is committed to ensuring that
emerging technologies can be incorporated and utilized within OpenStack, and containers are an important example of
that commitment.

To learn more, visit the Containers Landing Page , where you can find a copy of this document as well as links to dozens
of videos focused on the integrations of OpenStack and containers. Kubernetes SIG-OpenStack has a Slack channel,
mailing list, and weekly meeting if you engage directly with the community that’s building Kubernetes and OpenStack

http://superfluidity.eu/
https://ec.europa.eu/programmes/horizon2020/
http://manageiq.org/
https://www.openshift.com/
https://www.openstack.org/containers/
https://github.com/kubernetes/community/tree/master/sig-openstack

integrations.
V. Open Source Project Index
Airship

Airship is a collection of interoperable and loosely coupled open source tools that provide automated cloud provisioning
and management in a declarative way, based around Kubernetes as an application platform.

Ansible
Ansible is a commonly used orchestration tool used to deploy and manage OpenStack installations.
Cinder

OpenStack Cinder offers block storage as a service, providing a single APl backed by over seventy different possible
storage drivers.

Cloud Provider OpenStack

Cloud Provider OpenStack is the implementation of the Kubernetes Cloud Provider interface. It allows an OpenStack-
hosted Kubernetes cluster to directly access storage and load balancer resources in the OpenStack cloud.

Calico
Calico is a network overlay with drivers for both Kubernetes and OpenStack that features L3-only routing.
Cyborg

Cyborg is an OpenStack project that provides a general management framework for hardware accelerators including
FPGA, GPU, ASIC, and others. Work is in progress to surface a general hardware interface to pods.

Docker
Docker is an open source container virtualization framework, used to host containerized applications.

Helm

Helm is the official package manager for Kubernetes. Application deployments are described by Helm-Charts, which can
be automatically deployed and managed on a Kubernetes cluster.

Ironic

Ironic is the OpenStack bare-metal service. Running either as a standalone service or as a driver to OpenStack Nova, it
can manage the complete life-cycle of bare-metal systems, including enrollment, provisioning, maintenance, and
decommissioning.

Loci

LOCI is an OpenStack project to build lightweight, OCI compliant containers for OpenStack projects.

LXC

LXC is a low-level container virtualization interface that takes advantage of Linux kernel namespace isolation and other
technologies to create isolated linux runtimes.

Kata Containers

Kata Containers is a standard implementation of lightweight Virtual Machines (VMs) that feel and perform like containers,
but provide the workload isolation and security advantages of VMs.

Keystone
Keystone is the OpenStack Identity service that provides means for authenticating and managing user accounts and role

information primarily for the OpenStack cloud environment, but also as a plugin to other environments, including
Kubernetes.

Kolla (Containers)

Kolla (Containers) is an OpenStack project to build containers for each OpenStack service. It includes a sophisticated
build and templating systems, and is capable of building containers from both source and packages on a variety of host

file:///tmp/tmp_wkhtmlto_pdf_EGL6e5.html#airship
file:///tmp/tmp_wkhtmlto_pdf_EGL6e5.html#ansible
file:///tmp/tmp_wkhtmlto_pdf_EGL6e5.html#cinder
file:///tmp/tmp_wkhtmlto_pdf_EGL6e5.html#cloud-provider-openstack
file:///tmp/tmp_wkhtmlto_pdf_EGL6e5.html#calico
file:///tmp/tmp_wkhtmlto_pdf_EGL6e5.html#cyborg
file:///tmp/tmp_wkhtmlto_pdf_EGL6e5.html#docker
file:///tmp/tmp_wkhtmlto_pdf_EGL6e5.html#helm
file:///tmp/tmp_wkhtmlto_pdf_EGL6e5.html#ironic
file:///tmp/tmp_wkhtmlto_pdf_EGL6e5.html#loci
file:///tmp/tmp_wkhtmlto_pdf_EGL6e5.html#lxc
file:///tmp/tmp_wkhtmlto_pdf_EGL6e5.html#kata-containers
file:///tmp/tmp_wkhtmlto_pdf_EGL6e5.html#keystone
file:///tmp/tmp_wkhtmlto_pdf_EGL6e5.html#kolla-containers

operating systems.
Kolla Ansible

Kolla Ansible is an OpenStack project that uses Ansible to deploy and maintain a full OpenStack installation using Kolla
containers.

Kubernetes

Kubernetes is a container orchestration system that delivers robust and highly-available applications on top of cloud-
infrastructure.

Kuryr

Kuryr is an OpenStack project that provides a Neutron network overlay to container runtimes, including Docker and
Kubernetes. It aims to be the “integration bridge” for container and VM networks.

Magnum

Magnum is an OpenStack project that offers managed container platforms as a service, including Kubernetes, Docker
Swarm, Mesos, and DC/OS platforms. It is capable of creating tenant isolated application platforms through a simple user-
facing API.

Neutron

Neutron is the OpenStack software-defined networking service, offering a single API to deliver dynamic network
infrastructure backed by dozens of network drivers.

OpenStack Ansible

OpenStack Ansible is a project for building OpenStack services into LXC containers, and for deploying and managing
OpenStack installations within those containerized services.

OpenStack Helm

OpenStack Helm is an OpenStack project that deploys and manages the lifecycle of OpenStack and supporting
infrastructure on top of Kubernetes (eg Ceph and MariaDB) , delivering production ready deployments, for a range of use
cases from small edge deployments to large central offices. Leveraging the Helm package management system.
OpenStack Helm has support for both baremetal (Ironic) and virtual (Nova/KVM) workload management, and is image
agnostic supporting both LOCI and Kolla containers.

Qinling

Qinling is an OpenStack project to deliver Functions as a Service. Qinling supports different container orchestration
platforms, such as Kubernetes and Docker Swarm, as well as different function package storage backends such as local
file-store, OpenStack Swift, and S3.

Triple-O

TripleO is a project aimed at installing, upgrading and operating OpenStack clouds using OpenStack’s cloud services as
the foundation - building on Nova, Ironic, Neutron, Heat and Ansible to automate cloud management.

Zun

Zun is the OpenStack Containers service. It aims to provide an API service for running application containers without the
need to manage servers or clusters.

VI. Authors
Members of the OpenStack SIG-Kubernetes Community

e Jaesuk Ahn, SK Telecom

e Christian Berendt, Betacloud Solutions GmbH
e Anne Bertucio, OpenStack Foundation
e Pete Birley, AT&T

e Chris Hoge, OpenStack Foundation

e Lingxian Kong, Catalyst Cloud

e Hongbin Lu, Huawei

e Daniel Mellado, Red Hat, Inc.

e Allison Price, OpenStack Foundation

¢ David Rabel, B1 Systems GmbH

e Sangho Shin, SK Telecom

file:///tmp/tmp_wkhtmlto_pdf_EGL6e5.html#kolla-ansible
file:///tmp/tmp_wkhtmlto_pdf_EGL6e5.html#kubernetes
file:///tmp/tmp_wkhtmlto_pdf_EGL6e5.html#kuryr
file:///tmp/tmp_wkhtmlto_pdf_EGL6e5.html#magnum
file:///tmp/tmp_wkhtmlto_pdf_EGL6e5.html#neutron
file:///tmp/tmp_wkhtmlto_pdf_EGL6e5.html#openstack-ansible
file:///tmp/tmp_wkhtmlto_pdf_EGL6e5.html#openstack-helm
file:///tmp/tmp_wkhtmlto_pdf_EGL6e5.html#qinling
file:///tmp/tmp_wkhtmlto_pdf_EGL6e5.html#triple-o
file:///tmp/tmp_wkhtmlto_pdf_EGL6e5.html#zun

Davanum Srinivas, Huawei

Luis Tomas, Red Hat, Inc.

Sam Yaple, Verizon Digital Media Services
Mikhail Fedosin, Red Hat, Inc.

Flavio Percoco, Red Hat, Inc.

Editor

e Brian E Whitaker, Zettabyte Content LLC

