
Building	the	Future	on	Bare	Metal
How	Ironic	Delivers	Abstraction	and	Automation	using	Open	Source	Infrastructure
Introduction

Within	the	history	of	computing,	one	persistent	theme	has	been	the	layering	of	abstractions.	Wrapping	critical	technologies	in	new	interfaces	makes	computing	easier	to	use,	more	reliable,	and
more	secure.	Direct	hardware	programming	in	turn	uses	the	API	to	communicate	over	interfaces	using	low	level	system	libraries	and	common	driver	abstractions.	At	the	application	programming
layer,	APIs	are	used	to	build	applications,	which	are	networked	with	web	or	RESTful	APIs.	The	applications	are	hosted	in	virtualized	servers.	Virtualization	is	made	lighter-weight	and	easier	to	scale
with	the	introduction	of	containers	over	bare	metal	hypervisors.	The	application	container	itself	is	even	abstracted	away	with	the	recent	rise	of	functions	as	a	service	or	serverless	computing.

Yet,	there	is	one	fundamental	piece	that	underlies	everything	in	this	software	abstraction	layer:	the	need	for	properly	configured	and	managed	hardware	to	host	the	applications.	This	is	a
universal	problem	in	computing,	no	matter	if	you’re	using	a	device	as	small	as	a	watch	or	a	phone,	running	a	personal	computer,	or	hosting	an	entire	cluster	of	servers	delivering	millions	of
requests,	every	application	starts	directly	or	indirectly	with	the	thin	provisioning	of	the	physical	hardware,	known	as	ready	to	use	bare	metal.	Despite	all	of	the	advancements	in	computational
abstraction,	bare	metal	management	is	still	a	fundamental	problem	that	must	be	addressed.	This	is	similar	to	construction	domains	where	no	matter	what	framework	or	building	materials	you	use,
the	foundation	must	be	solid,	stable	and	secure	to	withstand	the	load,	stress	and	strain,	along	with	the	vagaries	of	nature	including	earthquake,	flood,	lightening	and	now	even	pandemic.

While	being	a	fundamental	or	foundational	hosting	problem,	we	can	still	bring	the	tools	of	abstraction	and	automation	to	bear	upon	solving	it,	making	the	provisioning	of	an	entire	data	center	or
any	remote	site	as	easy	as	typing	a	single	command	into	a	terminal	or	pressing	"submit"	on	a	web	form.

In	this	paper,	we	will	explore	how	the	Open	Infrastructure	community	has	addressed	the	bare	metal	provisioning	problem	with	entirely	free	open	source	software.	We	will	discuss	the	issues
operators	or	enterprises	face	in	discovering	and	provisioning	servers,	how	the	OpenStack	community	has	solved	these	issues	with	the	Ironic	project,	specific	case	studies	of	Ironic	use	in	production
and	the	future	of	open	infrastructure	and	hardware	management.

The	Motivation

Lack	of	standardization	of	bare	metal	API	leads	to	a	proliferation	of	system	installers	to	provision	a	host	system	with	storage	and	networking	on	day-1.	Subsequent	addressing	of	life	cycle	activity
for	day-2	management,	such	as	updating	and	upgrading	of	firmware,	is	then	ad-hoc	and	leads	to	large	downtime,deterring	system	availability	for	business	and	critical	usage	of	the	platform.
Additionally,	remote	automation	with	non	standard	hardware	or	API	leads	to	less	efficient	parallel	deployments.

The	other	aspects	are	the	labour	cost	and	the	pain	points	faced	by	data	center	staff	to	work	from	within	the	data	center.	It	takes	longer	to	resolve	issues	at	untimely	hours	on	site	or	to	manage
remotely	due	to	non	standard	hardware	and	lack	of	standard	tools	and	solutions.

At	a	conference	a	few	years	ago,	I	sat	down	to	dinner	next	to	someone	I	did	not	know.	He	started	to	tell	me	of	his	job	and	his	long	hours	in	the	data	center.	He	asked	me	what	I	did,	and	I
told	him	I	worked	as	a	software	engineer	in	open	source.	And	he	started	talking	about	some	tooling	he	recently	found	that	took	tasks	that	would	normally	take	nearly	two	weeks	for	racks
of	servers,	to	just	a	few	hours.	He	simply	glowed	with	happiness	because	his	quality	of	life	and	work	happiness	had	exploded	since	finding	this	Bare	Metal	as	a	Service	tooling	called
Ironic.

As	a	contributor,	this	is	why	we	contribute.	To	make	those	lives	better.	-	Julia	Kreger,	Ironic	PTL

How	a	Community	Came	Together

Within	the	OpenStack	community,	an	early	desire	existed	to	extend	the	Compute	abstractions	to	physical	machines.	The	community	wanted	to	provide	a	common	pattern	and	method	of	access	in
order	to	request	what	are	ultimately	"Compute"	resources	consisting	of	entire	physical	machines,	as	opposed	to	a	portion	of	a	physical	machine	that	would	normally	be	provided	as	a	Virtual
Machine.	This	started	as	the	"nova-baremetal"	component.

As	time	went	on	and	the	patterns	required	to	securely	provide	physical	resources	differed	from	those	of	providing	a	virtual	machine,	shortcomings	popped	up..	Many	standard	operations	during
the	lifetime	of	a	virtual	server	are	not	as	valuable	or	feasible	for	physical	machines,	like	live	migration	or	shelving.	Eventually,	in	the	case	of	a	virtual	machine,	you	simply	delete	the	virtual
machine	instance	when	you	are	done	with	it.	With	a	physical	machine,	the	host	has	to	be	cleaned	and	reconfigured	to	a	known	base	state	before	the	physical	machine	can	be	provided	to	a	new
user.

These	required	workflows	and	the	resulting	conflict	in	use	patterns	ultimately	drove	the	creation	of	the	"Ironic"	project	to	serve	as	a	vendor	neutral	space	where	these	common	workflows	could
exist	in	code	along	with	specific	patterns	required	to	support	individual	vendors’	hardware	and	features	integrated	within	that	hardware.

Field	Study

The	problem	of	automated,	unattended	machine	setup	is	not	new.	Many	projects	and	companies	have	tried	their	hand	at	this,	apparently,	hard	problem.	It	seems	that	the	complexity	comes	from
the	many	moving	parts	that	are	involved	in	machine	provisioning.	Apart	from	that,	the	desired	machine	configuration	can	differ	a	great	deal	from	one	to	another.

A	typical	machine	provisioning	might	include:

picking	a	most	suitable	server	from	a	pool	of	available	servers
applying	specific	configuration	for	hardware	(like	network	interfaces	or	RAID	controllers)	and	low-level	software	(like	firmware	or	BIOS)
loading	appropriate	software	(operating	system,	drivers,	applications)	as	well	as	user	data	into	it
applying	necessary	updates	to	minimize	vulnerabilities	in	software
configuring	network	stack,	monitoring,	applications,	etc.

Perhaps	guided	by	the	task	at	hand	and	constrained	by	the	underlying	technology,	machine	provisioning	projects	share	some	similarities.	They	typically	rely	on	common	standards	for	hardware
management	of	main	motherboards	or	system	cards,	using	Out	Of	Band	(OOB)	interfaces	like	IPMI1	or	Redfish2.	They	use	the	PXE	suite	for	network	booting,	configuration	management	software
(Ansible,	Puppet	etc)	for	machine	customization,	and	newer	implementations	to	offer	a	REST	API	as	an	integration	point.

To	name	a	few	high-profile	open	source	provisioning	projects,	Cobbler3	and	Foreman4	initially	focused	on	automated	Red	Hat	Enterprise	Linux	machine	life	cycle	management.	Newer
implementations	such	as	Canonical’s	MaaS5	and	Ironic	are	designed	to	work	with	cloud	software	to	represent	bare	metal	machines	to	the	operator	in	the	same	way	as	cloud	instances.

In	this	paper,	we	will	be	focusing	on	how	the	Ironic	project	supports	the	use-cases	of	the	Open	Infrastructure	operators	community,	covering	the	work	flows	and	integrations	that	are	deemed
necessary.	Note	this	is	a	new	initiative	to	delink	integrated	compute-service	Nova	and	Ironic	from	integrated	OpenStack.

Why	Bare	Metal?

When	we	look	at	the	original	desire	that	caused	the	creation	of	the	Ironic	project,	it	was	to	support	Bare	Metal	As	A	Service	(BMaaS),	or	ultimately	"Compute"	resources	on	distinct	physical
machines.

Often	people	wonder,	"Why	can't	a	VM	be	used?"	or,	"Why	do	you	need	a	whole	physical	server?"	The	reasons	vary,	but	they	tend	to	be	one	of	a	few	different	fundamental	reasons.

Performance

While	providing	an	additional	abstraction	layer	which	aims	to	add	flexibility	and	increase	overall	efficiency,	virtualizing	resources	reduces	the	overall	performance	available	to	the	application.	This
virtualization	tax	can	be	reduced	by	various	techniques,	such	as	pinning	cores,	exploiting	NUMA	structures	or	enabling	huge	pages,	but	virtual	machines	can	never	provide	the	full	resources	of	the
underlying	hardware	to	the	hosted	applications.	Also,	reducing	the	inferred	additional	latency	and	jitter	may	come	at	a	significant	additional	complexity	--	and	hence	cost	--	which	has	to	be
balanced	against	the	advantages	of	a	virtualized	environment.	This	is	obviously	a	concern	in	general,	but	in	High	Performance	Computing	(HPC)	environments,	getting	the	most	out	of	the
purchased	hardware	is	of	utmost	importance,	and	hence	virtualization	is	often	not	a	realistic	option.

In	addition	to	the	general	loss	of	performance,	the	variation	of	the	performance	over	time	caused	by	a	"noisy	neighbor"	can	also	pose	an	issue	for	the	hosted	application.	For	example,	debugging
the	performance	of	an	application	is	not	feasible	if	the	jitter	of	the	underlying	system	is	larger	than	the	optimisation	gain.

Security

Concern	of	a	shared	common	platform	is	a	strong	motivator	for	use	of	distinct	physical	machines.	Any	time	an	application	or	tenant's	workload	is	run,	be	it	inside	a	container	or	a	virtual	machine,
escape	attacks	may	exist.	This	may	be	to	search	for	data	or	to	pivot	and	attack	additional	systems.	These	vulnerabilities	may	not	be	just	of	the	underlying	platform	or	operating	system	code,	but
could	even	be	something	within	the	processor	of	the	physical	machine,	like	the	recent	Spectre/Meltdown	side-channel	attacks6.	A	similar	argument	holds	true	for	networking	and	storage.	Using
(and	hence	managing)	physical	resources	directly	may	be	desirable	when	the	virtual	separation	of	software-defined	solutions	is	not	regarded	as	sufficient.

Compliance	and	Stack	Independence

Service	contracts	or	industry/government	regulations	may	require	wholly	distinct	physical	systems	for	a	number	of	reasons:

to	support	different	roles	out	of	security	considerations
to	ensure	a	baseline	performance	for	the	hosted	application
for	proper	cost/performance	modeling
due	to	license	restrictions

A	related	compliance	example	is	mission-critical	equipment	that	requires	full	independence	from	any	shared	infrastructure,	such	as	an	underlying	hypervisor.	This	ensures	that	in	case	of	an
incident,	the	hosted	service	is	not	blocked	or	impacted	by	the	performance	or	required	actions	of	another	service.

Non-virtualizable	Resources

Ultimately,	some	components	of	an	infrastructure	cannot	(or	should	not)	be	virtualized.	This	includes	the	nodes	for	boot-strapping	the	infrastructure,	but	also	the	lowest	layer	of	the	infrastructure
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stack,	which	are	usually	the	hypervisors	themselves.

For	other	infrastructure	services,	such	as	storage	or	databases,	virtualization	may	not	make	much	sense	either:	whole-node	virtual	machines	would	be	required	and	the	gains	of	the	additional
virtualization	layer	may	not	outweigh	the	drawbacks	of	the	aforementioned	virtualization	tax	or	the	additional	complexity	of	a	horizontal	service	split.	Customers	want	acceleration	resources,	such
as	GPUs	or	FPGAs,	because	of	performance	or	latency.	But	not	all	acceleration	devices	work	nicely	with	virtualization	or	containerization.

Life	Cycle	Management

Although	there	can	be	good	reasons	to	prefer	bare	metal	nodes	over	virtualized	resources,	the	main	drawback	of	physical	nodes	is	the	complexity	to	manage	their	life	cycle.	From	the	moment	a
physical	server	is	installed	to	the	moment	it	is	removed,	there	are	several	phases	a	server	typically	goes	through.	Standard	operations	which	have	to	be	performed	include:

auto-discovery	and	registration	(with	inventory	systems	or	network	databases)
health	check	and	burn-in	(component	completeness	and	stress	testing)
benchmarking	(e.g.	as	part	of	acceptance)
hardware	configuration	(e.g.	RAID	setups	or	BIOS	settings)
using	and	configuring	Object	Storage	or	key-value	storage	instead	of	RAID	for	Local	or	Global	reliable	and	resilient	persistence
provisioning	to	the	end	user	or	services
hardware	health	monitoring
repairs	and	component	replacements	(including	update	of	inventory	databases)
BIOS	and/or	UEFI	firmware	updates
retirement	(e.g.	secure	data	erasure)	and	removal	from	above	databases

Each	of	these	steps	comes	with	its	own	difficulties	and	challenges,	so	let’s	pick	the	provisioning	to	end	users/services	as	an	example	for	a	closer	look.

A	common	element	in	layered	data	center	operations	is	the	need	to	allocate	servers	from	one	team	to	another	in	an	efficient	way,	like	when	the	servers	are	ready	for	production	and	can	be
handed	over	to	the	end	user/service.	Interfaces	must	be	defined	to	file	the	initial	request	for	resources,	follow	an	approval	workflow,	do	the	actual	hand-over	of	servers	including	their	credentials,
or	accurately	account	for	the	used	resources.	Furthermore,	the	demand	for	resources	can	fluctuate	over	time,	resulting	in	either	poor	performance	utilization	of	‘dedicated’	physical	nodes	or
delayed/impacted	business	outcomes	as	workloads	wait	to	be	scheduled	on	the	limited	number	of	physical	nodes.	The	reallocation	of	resources	between	different	users	then	becomes	an
additional	requirement,	and	with	this	the	need	for	secure	data	erasure	between	users,	the	reset	of	any	network	configuration	or	the	need	to	reset	credentials	in	integrated	systems,	such	as
Baseboard	Management	Controllers	(BMCs).	The	complexity	of	these	tasks	and	workflows	clearly	varies	with	the	environment,	but	automation	and	interface	support	is	essential	to	have	this	done
in	an	efficient	and	scalable	way.

How	Ironic	Helps

Ironic	was	born	as	an	OpenStack	project	to	replace	the	original	baremetal	driver	included	in	Nova	(the	OpenStack	compute	instances	project).	It	allows	operators	to	provision	bare	metal	machines
instead	of	virtual	machines.	Ironic	is	fully	integrated	with	the	rest	of	the	stack	primarily	thanks	to	a	virtualization	driver	for	Nova	that	makes	the	CLI	completely	transparent	to	the	final	user.	It	can
also	integrate	with	other	OpenStack	projects,	like	Neutron	(networking	as	a	service),	Glance	(machine	images	management)	and	Swift	(object	store).

Ironic	provides	generic	drivers	("interfaces")	that	support	standards	like	IPMI	and	Redfish,	used	to	manage	any	type	of	bare	metal	machine,	no	matter	the	brand.	At	the	same	time,	it's	officially
supported	by	different	vendors	that	help	maintain	not	only	the	Ironic	code-base,	but	also	their	own	interfaces	included	in	the	Ironic	code	to	provide	full	compatibility	with	their	specific	features.

Ironic	is	developed	in	Python,	it	is	open	source,	and	it	uses	gerrit7	for	code	review.	To	ensure	reliability	of	the	code,	Ironic	uses	the	powerful	Zuul8	CI	engine	tool	to	run	the	basic	unit	and	functional
tests,	and	also	to	simulate	bare	metal	machines	using	advanced	virtualization	techniques	to	be	able	to	run	more	complex	tests	with	different	deployment	scenarios,	including	upgrades	and
multinode	environments.

Ironic	has	evolved	and	grown	since	it	was	"just"	a	way	to	provide	bare	metal	machines	to	OpenStack	users,	finding	ways	to	effectively	become	a	standalone	bare	metal	as	a	service	system,
capable	of	providing	the	same	features	as	a	full	hardware	management	application.

Robust	API

Ironic	is	API-driven	and	API-first,	and	it	includes	a	full	set	of	RESTful	APIs	that	provide	a	common	vendor	agnostic	interface,	allowing	provisioning	and	management	of	bare	metal	machines	for	their
entire	lifecycle,	from	enrollment	to	retirement.	It	takes	into	account	possible	multiple	reconfigurations	and	reuse	of	the	same	device,	where	a	node	can	be	re-provisioned	for	different	use	cases
over	its	life.

A	non-comprehensive	list	of	features	provided	by	the	Ironic	API	includes:

Auto-discovery,	to	automatically	register	bare	metal	machines	("nodes")	in	Ironic
Hardware	introspection,	to	collect	information	on	the	node’s	hardware	and	store	it	in	the	Ironic	database
Benchmarking	and	health-check	on	hardware	components
Cleaning,	to	provide	a	purged	node	before	deploying	an	operating	system	on	top	of	it
Configuration	and	provisioning,	including	custom	images	installation
End-of-life	support	up	to	node	retirement

Tools

All	the	tools	described	here	use	Ironic	in	some	form	to	provision	and	manage	bare	metal	hosts.

TripleO9

Omni-comprehensive	tool	to	deploy	a	full	OpenStack	environment.	Ironic	is	used	to	deploy	and	manage	the	bare	metal	hosts	that	constitute	the	base	of	the	cloud	infrastructure	and	to	manipulate
network	switches	configuration,	as	well	as	the	cloud	bare	metal	hosts	provider	integrated	in	the	OpenStack	cloud.

Metal310

Bare	metal	provisioning	and	enablement	project	that	aims	to	provide	a	Kubernetes11	native	API	to	manage	bare	metal	hosts.	The	tool	includes	a	Bare	Metal	Operator	(Metal3	SDK	generated	stack)
as	a	component	and	proposes	to	include	Ironic	as	an	optional	module	to	drive	machine	instances.	Note	Metal3	(pronounced	“metal	cubed”)	is	adding	support	to	enable	external	management	of
bare	metal	hosts	from	the	Cluster	API,	which	again	uses	Kubernetes'	operating	model	but	focuses	on	different	plug-in	Cloud	controllers	using	Custom	Resource	Definitions	(CRDs)	to	support
containerized	Control	planes	such	as	OpenStack,	Azure,	Amazon	Web	Services,	Google	Cloud	etc.	In	this	use	case,	the	first	supported	bare	metal	driver	is	Ironic.	Largely	this	use	of	ironic	has	been
focused	on	the	OpenShift	Container	Platform	installation,	but	the	community	is	presently	growing	and	evolving.

Airship12

A	collection	of	tools	that	help	provisioning	and	managing	a	cloud	infrastructure	starting	from	bare	metal	hosts.	In	Airship	2.0,	Ironic	is	used	via	Metal3.io	as	a	bare	metal	provisioning	component
integrated	in	the	Airship	platform.

Bifrost14

An	Ansible	playbooks	based	tool	that	helps	deploy	bare	metal	servers	using	predefined	images	and	standalone	Ironic.

Kayobe15

A	suite	that	combines	different	tools	(like	Bifrost,	mentioned	before,	and	Kolla)	together	to	be	able	to	deploy	OpenStack	services	in	containers	on	top	of	bare	metal.	Kayobe	configuration	and
workflows	are	all	Ansible-driven,	providing	a	consistent	interface	at	every	level.

Clients

OpenStackSDK16

A	generic	OpenStack	client	library	used	to	build	clients	to	interact	with	OpenStack	cloud	services.	It	has	a	dedicated	bare	metal	module	that	is	kept	up-to-date	with	the	latest	features	developed	in
Ironic.

Gophercloud17

This	is	the	equivalent	of	the	OpenStack	SDK	but	for	golang.It	allows	go	developers	to	directly	interact	with	OpenStack	clouds,	and	supports	various	services	including	Ironic.

Ironicclient18

Official	client,	written	in	python.	Provides	an	API	module,	ironicclient	itself,	that	is	used	to	build	clients,	such	as	the	official	openstackclient,	that	includes	a	bare	metal	subset	of	instructions	to
interact	with	Ironic,	and	a	standalone	CLI	that	allows	interaction	with	Ironic	without	having	to	install	the	openstackclient	itself.

Automation

Ansible19

Open-source	declarative	automation	tool	used	to	manage	configurations	and	deployments.	It	is	platform-agnostic	and	highly	customizable	with	modules	written	in	Python.	Ironic	provides	a	set	of
modules	to	be	used	with	it.
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Terraform20

"Infrastructure	as	code"	open-source	tool	that	allows	users	to	define	and	provision	an	infrastructure	using	its	own	configuration	language	(HCL).	It	supports	multiple	cloud	providers,	including
OpenStack.	Metal3	has	developed	its	own	terraform	provider	to	be	used	with	Ironic.

Puppet	Ironic21

Puppet22	is	yet	another	open-source	software	to	automate	infrastructure	configuration	and	deployment.	Based	on	an	agent-master	system,	it	is	customizable	with	modules	written	in	Ruby.	Ironic
has	its	own	puppet	module	to	help	OpenStack	deployments.

Usage	Patterns

Cluster	Installation

While	more	and	more	applications	are	migrating	to	cloud	solutions,	the	problem	of	installing	and	managing	the	underlying	clouds	becomes	even	more	important.	Before	becoming	a	part	of	a
cluster,	hardware	has	to	be	configured	and	provisioned	in	a	consistent	and	efficient	manner,	while	still	allowing	a	certain	degree	of	site-specific	customizations.

To	solve	some	of	these	problems	and	aid	in	creating	clusters	within	the	OpenStack	community,	multiple	tools	have	been	built	upon	Ironic	to	support	specific	workflow	cases	from	bulk	basic
Operating	System	installation	(Bifrost),	cluster	deployment	of	OpenStack	(TripleO	and	Kayobe)	and	Kubernetes	(Metal3).

Cluster	Expansion

Expansion	of	existing	clusters	requires	integration	into	existing	environments.	This	requires	that	information	about	the	new	hardware	as	well	as	the	physical	connectivity	are	made	available	to
applications	and	personnel	performing	this	expansion.	This	activity	can	almost	be	described	as	an	act	of	inspection	of	the	hardware	to	enable	this	validation.	Additional	actions,	provided	by	the
“cleaning”	framework	in	Ironic,	may	also	be	required	to	make	sure	new	hardware	behaves	consistently	with	the	existing	hardware.

Bare	Metal	as	a	Service

While	virtual	machines	and	containers	can	replace	hardware	for	many	applications,	there	are	still	cases	where	bare	metal	instances	have	to	be	provided	to	end	users	of	a	cloud	solution.	Providing
them	in	a	fashion	consistent	with	other	cloud	features	provides	a	smooth	user	experience	and	allows	for	simpler	automation.	To	enable	that,	Ironic	can	function	as	a	backend	for	the	OpenStack
Compute	service	(Nova),	while	optional	integration	with	OpenStack	Networking	(Neutron),	OpenStack	Image	service	(Glance)	and	OpenStack	Block	Storage	(Cinder)	brings	the	bare	metal
experience	as	close	as	possible	to	virtual	machines.

Additionally,	exposing	bare	metal	machines	to	potentially	untrusted	tenants	puts	a	strong	emphasis	on	security	aspects.	The	pluggable	cleaning	process	of	Ironic	provides	an	ability	to	return	bare
metal	machines	to	a	known	state	between	tenants,	including	actions	such	as	removing	information	from	hard	drives,	changing	networks	and/or	resetting	firmware	settings.

Containers	on	Bare	Metal

Containers	and	container	orchestration	frameworks,	such	as	Kubernetes,	address	the	needs	of	cloud-native	applications	for	fast	configuration	changes,	smooth	upgrades	or	automatic	scaling.
While	such	clusters	are	usually	built	on	top	of	virtual	machines,	this	may	add	extra	cost	and	complexity	to	the	underlying	cloud	infrastructure	or	introduce	an	undesired	performance	loss	due	to
the	virtualization	tax.	A	bare	metal	management	API,	such	as	the	one	provided	by	Ironic,	allows	for	a	transparent	move	from	virtual	to	bare	metal	clusters	as	the	underpinning	infrastructure.	One
example	of	this	is	OpenStack	Magnum	as	the	cluster	orchestration	engine	where	the	compute	endpoint	would	either	instantiate	virtual	or	physical	instances	depending	on	the	specified	template.
Equally,	such	an	API	can	be	used	for	the	integration	with	other	provisioning	tools,	such	as	Metal3	for	Kubernetes,	and	hence	eliminate	the	intermediate	virtualization	layer	when	deploying
containerized	applications.

Edge	Equipment	Management

The	Edge	architectures	pose	new	challenges	for	hardware	management.	Remote	connectivity	through	an	inherently	insecure	medium	precludes	or	limits	the	usage	of	many	traditional	bare	metal
provisioning	and	management	technologies,	such	as	PXE	or	IPMI,	while	encrypting	and	authentication	at	each	stage	becomes	a	requirement.	Redfish,	an	open	bare	metal	management	standard
developed	by	the	Distributed	Management	Task	Force	(DMTF),	allows	addressing	many	of	these	challenges	by	providing	a	robust	set	of	features	over	the	battle-proven	HTTPS	protocol.
Deployment	using	virtual	media	devices,	recently	implemented	in	Ironic,	allows	completely	bypassing	the	initial	insecure	and	unreliable	deployment	stages,	using	only	TLS-encrypted
communications.

Shared	Hardware	Management

In	a	middle	ground	between	owning	hardware	management	and	bare	metal	as	a	service,	hardware	belonging	to	different	tenants	can	be	physically	located	and	managed	in	a	single	data	center.	In
this	case,	complete	separation	between	tenants	is	required,	while	each	tenant	should	still	have	full	access	to	machines	belonging	to	them.	The	“ownership”	concept	allows	non-administrative
users	access	to	the	bare	metal	API	limited	to	only	the	nodes	that	they	own.

Hardware	Fault	Management

As	data	centers	scale	up	and	the	number	of	sites	where	equipment	under	management	is	deployed	increases,	hardware	failures	become	the	norm.	Identifying	failed	equipment,	marking	it	in	Ironic
and	replacing	it	(while	preserving	the	identity	of	the	replaced	component)	are	necessities	for	daily	operations.

Case	Studies

CERN

What	is	matter	made	of?	Why	is	there	more	matter	than	antimatter?	What	happened	in	the	first	moments	after	the	big	bang?	Finding	answers	to	these	and	other	fundamental	questions	about	our
universe	is	the	mission	of	CERN23,	the	European	Organisation	for	Nuclear	Research.

To	achieve	its	mission,	CERN	has	built	and	operates	the	largest	particle	physics	laboratory	in	the	world,	located	at	the	Franco-Swiss	border	close	to	Geneva.	Here,	the	organisation	provides	and
maintains	a	complex	of	hierarchical	particle	accelerators,	experiment	detectors	and	their	surrounding	infrastructure	to	enable	thousands	of	scientists	worldwide	to	advance	our	knowledge	about
what	the	universe	is	made	of	and	how	it	works.

To	analyse	the	data	produced	in	these	experiments	requires	close	to	200	computing	centres	all	over	the	world,	joining	their	compute	power	in	the	Worldwide	LHC	Computing	Grid.	The	CERN	data
centre	is	at	the	centre	of	this	scientific	infrastructure	and	features	around	230,000	cores	in	more	than	15,000	servers.	More	than	90%	of	the	computing	resources	at	CERN	are	provided	by	a
private	cloud	based	on	OpenStack,	a	deployment	the	CERN	IT	department	has	run	in	production	since	2013.

There	were	several	reasons	to	recently	complete	the	service	offering	of	the	cloud	service	by	a	system	for	bare	metal	provisioning:

Simplify	the	procurement	and	provisioning	workflows	for	physical	machines
Integrate	bare	metal	servers	into	resource	accounting
Satisfy	special	use	cases	and	enable	new	ones

Workflow	Simplification:	The	Hardware	Life	Cycle	at	CERN

Before	physical	machines	enter	production	at	CERN,	new	hardware	has	to	undergo	verification,	burn-in	and	benchmarking.	The	reasoning	behind	these	steps	include:

Ensuring	that	the	hardware	complies	with	the	technical	specification
Identifying	broken	components,	such	as	a	malfunctioning	CPU
Finding	systematic	errors	in	a	delivery,	such	as	a	firmware	issue
Provoking	early	failures

Once	the	servers	have	made	it	through	this	process,	they	are	allocated	to	their	end	users.	This	is	typically	done	by	changing	ownership	in	one	of	our	internal	databases.	It	is	then	up	to	the	end
users	to	install,	configure	and	monitor	the	hardware.	If	users	don’t	need	their	machines	any	longer	or	if	the	machines	reach	their	end	of	life,	they	are	given	back	to	the	procurement	team	(by
reverting	the	ownership	change).	The	machines	are	then	cleaned,	e.g.	disks	are	wiped	or	IPMI	passwords	are	reset,	and	either	allocated	to	a	new	use	case,	donated	or	disposed.	Figure	1	gives	an
overview	of	the	steps	during	this	life	cycle.
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Figure	1:	Procurement	and	resource	allocation	workflow.
The	whole	process	is	complex	by	nature,	but	relies	in	addition	on	various	tools	written	in-house	and	also	requires	human	intervention	at	various	steps.	The	introduction	of	Ironic	as	the	main	tool	for
physical	resource	management	is	intended	to	reduce	the	complexity,	the	maintenance	load	and	the	need	for	human	intervention	to	unblock	certain	steps	during	the	process.

After	initial	registration	into	our	network	databases,	the	nodes	are	now	enrolled	in	Ironic,	which	can	do	the	verification	of	the	technical	specification	(via	inspection	rules),	run	the	burn-in	and
benchmarking	(as	manual	cleaning	steps),	and,	in	conjunction	with	Nova,	simplifies	the	allocation	and	re-allocation	process.	Requestors	of	physical	machines	will	use	a	single	form	to	request
compute	resources	and	get	their	physical	machines	via	the	same	OpenStack	instance	creation	process	they	use	for	virtual	machines.	If	machines	are	not	needed	any	longer,	the	physical	instances
can	be	destroyed,	which	will	trigger	Ironic’s	automatic	cleaning.	The	machines	are	marked	as	free	and	are	available	for	new	use	cases.	The	final	retirement	(with	more	extensive	cleaning)	also
becomes	a	manual	cleaning	step.	With	the	state	machine	in	Ironic,	its	cleaning	framework	and	its	integration	with	Nova,	a	large	fraction	of	the	resource	provisioning	workflow	is	hence	reduced	to	a
few	API	calls.

Resource	Accounting

Along	with	the	introduction	of	an	OpenStack	based	private	cloud	service	in	the	CERN	IT	department	a	few	years	ago,	the	policy	that	all	servers	shall	be	virtual	was	established.	Accounting
questions	such	as	‘which	service	is	using	how	many	resources?’	became	much	easier	to	answer	with	OpenStack	as	the	single	pane	of	glass	for	compute	resource	provisioning	and	management.

Since	physical	machines	were	allocated	outside	of	OpenStack,	a	separate	source	had	to	be	maintained	and	consulted	in	order	to	get	the	full	accounting	details.	Things	became	even	more
complicated	when	physical	machines	were	assigned	to	a	new	use	case,	as	this	needs	to	be	recorded	and	tracked	in	order	to	always	have	an	accurate	picture	of	resource	allocation.

With	physical	instances	managed	in	Nova	and	provisioned	by	Ironic,	the	number	of	sources	for	the	overall	accounting	is	reduced	to	one.	Servers	changing	use	cases	do	not	require	active	tracking
any	longer,	since	the	corresponding	nodes	in	Ironic	will	have	instances	in	known	projects	and	can	be	attributed	accordingly.	The	resource	accounting	is	made	simpler	and	more	consistent	by	using
Ironic.

As	Ironic	also	supports	‘adoption’,	i.e.	the	integration	of	already	existing	servers	without	the	need	to	instantiate	them	through	Nova	or	Ironic,	getting	a	full	picture	of	the	physical	infrastructure	and
the	corresponding	assignments	does	not	need	to	wait	for	a	full	fleet	replacement.

Special	and	New	Use	Cases

Some	of	the	services	in	the	CERN	IT	department	are	exempt	from	the	aforementioned	‘virtual	first’	policy.	This	includes	the	service	providing	the	compute	infrastructure,	i.e.	OpenStack	compute
nodes	(but	not	the	OpenStack	control	plane),	as	well	as	the	storage	services,	e.g.	disk	or	database	servers,	or	mission	critical	services	which	are	either	in	areas	outside	of	the	standard	network
connectivity	or	which	cannot	depend	on	other	services,	e.g.	due	to	boot-strapping	or	security	reasons.

There	are,	however,	use	cases	where	none	of	the	requirements	above	apply,	but	where	it	is	still	sensible	to	have	these	services	on	physical	machines.	One	example	is	the	code	calibration	and
performance	monitoring	services	of	the	Large	Hadron	Collider	(LHC)	experiments.	In	order	to	satisfy	the	computing	needs	to	analyze	the	many	PetaBytes	of	data	produced	by	the	LHC	experiments
at	CERN	and	to	use	the	resources	at	hand	in	the	most	efficient	way,	it	is	crucial	to	optimize	the	code	as	much	as	possible.	In	order	to	detect	the	impact	of	code,	operating	system,	or	compiler
changes,	a	stable	platform	which	provides	reproducible	results	is	required.	Since	the	hypervisors	in	our	OpenStack	deployment	are	over-committed	in	terms	of	CPU,	virtual	machines	do	not
provide	such	a	stable	platform	(even	without	overcommit	it	is	probably	desirable	to	reduce	the	number	of	layers	and	remove	virtualization).	Other	use	cases	where	physical	servers	are	a	sensible
choice	may	include	servers	with	GPUs	or	special	hardware	in	our	HPC	clusters.

The	CERN	IT	department’s	OpenStack	cloud	service	also	supports	the	creation	of	container	clusters	via	OpenStack	Magnum.	While	the	service	started	with	support	for	Swarm	and	Mesos,	the	vast
majority	of	these	clusters	today	use	Kubernetes.	The	Kubernetes	clusters	are,	however,	created	via	OpenStack	Heat	on	top	of	virtual	machines.	This	adds	an	additional	(not	necessarily	desired)
layer	of	abstraction.	With	Ironic,	it	is	now	possible	to	create	such	clusters	directly	with	physical	machines,	or	even	in	a	hybrid	mode	where	only	the	master	nodes	are	virtual	machines	and	the
minions	are	physical	machines.	One	example	for	an	application	which	makes	use	of	this	approach	is	the	CERN	IT	department’s	batch	processing	service.	The	combination	of	virtual	and	physical
machine	provisioning	via	Nova	and	Ironic	here	allows	for	maximizing	the	efficient	use	of	the	allocated	resources.

Current	Service	Status	and	Future	Plans

The	bare	metal	provisioning	at	CERN	based	on	Ironic	has	been	in	production	for	around	two	years	now,	with	more	than	5,000	nodes	currently	enrolled.	With	only	minor	modifications,	e.g.	to
leverage	our	central	PXE	infrastructure	rather	than	one	managed	on	the	Ironic	controllers,	we	use	the	upstream	releases	and	have	successfully	upgraded	Ironic	multiple	times.

Figure	2:	The	Ironic	dashboard	used	in	the	CERN	IT	department.
While	Ironic	in	its	current	configuration	has	already	achieved	most	of	the	goals	outlined	above	and	has	been	established	as	the	framework	to	manage	the	whole	life	cycle	of	physical	servers	in	the
CERN	IT	department,	there	are	several	areas	where	we	expect	further	benefits.	In	addition	to	the	adoption	of	existing	physical	nodes,	the	currently	evolving	graphical	console	support,	the
introduction	of	Redfish	as	the	IPMI	successor	and	the	development	of	a	hardware	inventory	system,	working	closely	with	Ironic	is	of	special	interest	to	resource	provisioning	services	in	the	CERN	IT
department.
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Software	RAID	Support	in	Ironic

Ironic	operates	in	a	curious	world.	Each	release	of	Ironic	introduces	even	more	inventive	implementations	of	the	abstractions	of	virtualization.	However,	bare	metal	is	wrapped	up	in	hardware-
defined	concrete:	devices	and	configurations	that	have	no	equivalent	in	software-defined	cloud.	To	exist,	Ironic	must	provide	pure	abstractions,	but	to	succeed	it	must	also	offer	real-world
circumventions.

For	decades,	the	conventional	role	of	an	HPC	system	administrator	has	included	deploying	bare	metal	machines,	sometimes	at	large	scale.	Automation	becomes	essential	beyond	trivial	numbers
of	systems	to	ensure	repeatability,	scalability	and	efficiency.	Thus	far,	that	automation	has	evolved	in	domain-specific	ways,	loaded	with	simplifying	assumptions	that	enable	large-scale
infrastructure	to	be	provisioned	and	managed	from	a	minimal	service.	Ironic	is	the	first	framework	to	define	the	provisioning	of	bare	metal	infrastructure	in	the	paradigm	of	cloud.

So	much	for	the	theory:	working	with	hardware	has	always	been	a	little	hairy,	never	as	predictable	or	reliable	as	expected.	Software-defined	infrastructure,	the	method	underpinning	the	modern
mantra	of	agility,	accelerates	the	interactions	with	hardware	services	by	orders	of	magnitude.	Ironic	strives	to	deliver	results	in	the	face	of	unreliability	(minimising	the	need	to	ask	someone	in	the
data	centre	to	whack	a	machine	with	a	large	stick).

HPC	Infrastructure	for	Seismic	Analysis

As	a	leader	in	the	seismic	processing	industry,	ION	Geophysical25	maintains	a	hyperscale	production	HPC	infrastructure,	and	operates	a	phased	procurement	model	that	results	in	several
generations	of	hardware	being	active	within	the	production	environment	at	any	time.	Field	failures	and	replacements	add	further	divergence.	Providing	a	consistent	software	environment	across
multiple	hardware	configurations	can	be	a	challenge.

ION	is	migrating	on-premise	HPC	infrastructure	into	an	OpenStack	private	cloud.	The	OpenStack	infrastructure	is	deployed	and	configured	using	Kayobe,	a	project	that	integrates	Ironic	(for
hardware	deployment)	and	Kolla-Ansible	(for	OpenStack	deployment),	all	within	an	Ansible	framework.	Ansible	provides	a	consistent	interface	to	everything,	from	the	physical	layer	to	the
application	workloads	themselves.

This	journey	began	with	some	older-generation	HPE	SL230	compute	nodes	and	a	transfer	of	control	to	OpenStack	management.	Each	node	has	two	HDDs.	To	meet	the	workload	requirements,
these	are	provisioned	as	two	RAID	volumes	-	one	mirrored	(for	the	OS)	and	one	striped	(for	scratch	space	for	the	workloads).

Each	node	also	has	a	hardware	RAID	controller,	and	standard	practice	in	Ironic	would	be	to	make	use	of	this.	However,	after	considerable	effort	it	was	found:

The	hardware	RAID	controller	is	managed	using	the	ssacli	tool.
The	RAID	controller	requires	a	proprietary	kernel	driver.
The	driver	was	not	available	for	the	latest	CentOS	releases.
The	server	hardware	included	a	‘personality	board’	that	had	silently	failed	on	many	systems,	preventing	the	automated	reconfiguration	of	hardware	RAID	on	those	systems.

Taking	these	and	other	factors	into	account,	it	was	decided	that	the	hardware	RAID	controller	was	unusable	for	this	migration.	Thankfully,	Ironic	developed	a	software-based	alternative.

Provisioning	to	Software	RAID

Linux	servers	are	often	deployed	with	their	root	filesystem	on	a	mirrored	RAID-1	volume.	This	requirement	exemplifies	the	inherent	tensions	within	the	Ironic	project.	The	abstractions	of
virtualization	demand	that	the	guest	OS	is	treated	like	a	black	box,	but	the	software	RAID	implementation	is	Linux-specific.	However,	not	supporting	Linux	software	RAID	would	be	a	limitation	for
the	primary	use	case.	Without	losing	Ironic's	generalised	capability,	the	guest	OS	“black	box”	becomes	a	white	box	in	exceptional	cases	such	as	this.	Recent	work	led	by	CERN	has	contributed
software	RAID	support	to	the	Ironic	Train	release.

The	CERN	team	has	documented	the	software	RAID	support	on	their	tech	blog26.

In	its	initial	implementation,	the	software	RAID	capability	is	constrained.	A	bare	metal	node	is	assigned	a	persistent	software	RAID	configuration,	applied	whenever	a	node	is	cleaned	and	used	for
all	instance	deployments.	Prior	work	involving	the	StackHPC	team	to	develop	instance-driven	RAID	configurations27	is	not	yet	available	for	software	RAID.	However,	the	current	driver
implementation	provides	exactly	the	right	amount	of	functionality	for	Kayobe's	cloud	infrastructure	deployment.

The	Method

RAID	configuration	in	Ironic	is	described	in	greater	detail	in	the	Ironic	Admin	Guide.	A	higher-level	overview	is	presented	here.

Software	RAID	with	UEFI	boot	is	not	supported	until	the	Ussuri	release,	so	BIOS-mode	booting	must	be	configured	when	deploying	Train	OpenStack.

A	series	of	compute	nodes,	each	with	two	physical	spinning	disks,	were	provisioned	according	to	the	CERN	blog	article.	Two	RAID	devices	were	specified	in	the	RAID	configuration	set	on	each
node;	the	first	for	the	operating	system,	and	the	second	for	use	by	Nova	as	scratch	space	for	VMs.

{
		"logical_disks":	[
				{
						"raid_level":	"1",
						"size_gb"			:	100,
						"controller":	"software"
				},
				{
						"raid_level":	"0",
						"size_gb"			:	"MAX",
						"controller":	"software"
				}
		]
}

The	RAID	configuration	was	then	applied	with	the	following	cleaning	steps:

[{
		"interface":	"raid",
		"step":	"delete_configuration"
	},
	{
		"interface":	"deploy",
		"step":	"erase_devices_metadata"
	},
	{
		"interface":	"raid",
		"step":	"create_configuration"
	}]

A	RAID-1	device	was	selected	for	the	OS	so	that	the	hypervisor	would	remain	functional	in	the	event	of	a	single	disk	failure.	RAID-0	was	used	for	the	scratch	space	to	take	advantage	of	the
performance	benefit	and	additional	storage	space	offered	by	this	configuration.	It	should	be	noted	that	this	configuration	is	specific	to	the	intended	use	case,	and	may	not	be	optimal	for	all
deployments.

As	noted	in	the	CERN	blog	article,	the	mdadm	package	was	installed	into	the	Ironic	Python	Agent	(IPA)	ramdisk	for	the	purpose	of	configuring	the	RAID	array	during	cleaning.	mdadm	was	also
installed	into	the	deploy	image	to	support	the	installation	of	the	grub2	bootloader	onto	the	physical	disks	for	the	purposes	of	loading	the	operating	system	from	either	disk	should	one	fail.	Finally,
mdadm	was	added	to	the	deploy	image	ramdisk,	so	that	when	the	node	booted	from	disk,	it	could	pivot	into	the	root	filesystem.

Open	Source,	Open	Development

As	an	open-source	project,	Ironic	depends	on	a	thriving	user	base	contributing	back	to	the	project.	Our	experiences	covered	new	ground:	hardware	not	used	before	by	the	software	RAID	driver.
Inevitably,	new	problems	were	found.

The	first	observation	was	that	configuration	of	the	RAID	devices	during	cleaning	would	fail	on	about	25%	of	the	nodes	from	a	sample	of	56.	The	nodes	which	failed	logged	the	following	message:

mdadm:	super1.x	cannot	open	/dev/sdXY:	Device	or	resource	busy
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Where	X	was	either	a	or	b	and	Y	either	1	or	2,	denoting	the	physical	disk	and	partition	number	respectively.	These	nodes	had	previously	been	deployed	with	software	RAID,	either	by	Ironic	or	by
other	means.

Inspection	of	the	kernel	logs	showed	that	in	all	cases,	the	device	marked	as	busy	had	been	ejected	from	the	array	by	the	kernel:

md:	kicking	non-fresh	sdXY	from	array!

The	device	which	had	been	ejected	or	may	not	have	been	synchronised	and	appeared	in	/proc/mdstat	as	part	of	a	RAID-1	array.	The	other	drive,	having	been	erased,	was	missing	from	the
output.	It	was	concluded	that	the	ejected	device	had	bypassed	the	cleaning	steps	designed	to	remove	all	previous	configuration,	and	had	later	resurrected	itself,	thereby	preventing	the	formation
of	the	array	during	the	create_configuration	cleaning	step.

For	cleaning	to	succeed,	a	manual	workaround	of	stopping	this	RAID-1	device	and	zeroing	signatures	in	the	superblocks	was	applied:

mdadm	--zero-superblock	/dev/sdXY

Removal	of	all	pre-existing	states	greatly	increased	the	reliability	of	software	RAID	device	creation	by	Ironic.	The	remaining	question	was	why	some	servers	exhibited	this	issue	and	others	did	not.
Further	inspection	showed	that	although	many	of	the	disks	were	old,	there	were	no	reported	SMART	failures.	The	disks	passed	self	tests	and	although	generally	close,	had	not	exceeded	their	mean
time	before	failure	(MTBF).	No	signs	of	failure	were	reported	by	the	kernel	other	than	the	removal	of	a	device	from	the	array.	Actively	seeking	errors,	for	example	by	running	tools	such	as
badblocks	to	exercise	the	entire	disk	media,	showed	that	only	a	very	small	number	of	disks	had	issues.	Benchmarking,	burn-in	and	anomaly	detection	may	have	identified	those	devices	sooner.

Further	research	may	help	us	identify	whether	the	disks	that	exhibit	this	behaviour	are	at	fault	in	any	other	way.	An	additional	line	of	investigation	could	be	to	increase	thresholds	such	as	retries
and	timeouts	for	the	drives	in	the	kernel.

The	second	issue	observed	occurred	when	the	nodes	booted	from	the	RAID-1	device.	These	nodes,	running	IPA	and	deploy	images	based	on	Centos	7.7.1908	and	kernel	version	3.10.0-1062,
would	show	degraded	RAID-1	arrays,	with	the	same	message	seen	during	failed	cleaning	cycles:

md:	kicking	non-fresh	sdXY	from	array!

A	workaround	for	this	issue	was	developed	by	running	a	Kayobe	custom	playbook	against	the	nodes	to	add	sdXY	back	into	the	array.	In	all	cases,	the	ejected	device	was	observed	to	resync	with
the	RAID	device.	The	state	of	the	RAID	arrays	is	monitored	using	OpenStack	Monasca,	ingesting	data	from	a	recent	release	candidate	of	Prometheus	Node	Exporter	containing	some	enhancements
around	MD/RAID	monitoring.28	Software	RAID	status	can	be	visualised	using	a	simple	dashboard:

Figure:	Monasca	MD/RAID	Grafana	dashboard.	The	plot	in	the	top	left	shows	the	percentage	of	blocks	synchronised	on	each	RAID	device.	A	single	RAID-1	array	can	be	seen	recovering	after	a
device	was	forcibly	failed	and	added	back	to	simulate	the	failure	and	replacement	of	a	disk.	Unfortunately	it	is	not	yet	possible	to	differentiate	between	the	RAID-0	and	RAID-1	devices	on	each
node	since	Ironic	does	not	support	the	name	field	for	software	RAID29	.	The	names	for	the	RAID-0	and	RAID-1	arrays	therefore	alternate	randomly	between	md126	and	md127.	Top	right:	The
simulated	failed	device	is	visible	within	seconds.	This	is	a	good	metric	from	which	to	generate	an	alert.	Bottom	left:	The	device	is	marked	as	recovering	while	the	array	rebuilds.	Bottom	right:	No
manual	re-sync	was	initiated.	The	device	is	seen	as	recovering	by	MD/RAID	and	does	not	show	up	in	this	figure.
The	root	cause	of	these	two	issues	is	not	yet	identified,	but	they	are	likely	to	be	connected	and	related	to	an	interaction	between	these	disks	and	the	kernel	MD/RAID	code.

Open	Source,	Open	Community

Software	that	interacts	with	hardware	soon	builds	up	an	extensive	"case	law"	of	exceptions	and	workarounds.	Open	projects	like	Ironic	survive	and	indeed	thrive	when	users	become	contributors.
Equivalent	projects	that	do	not	draw	on	community	contribution	have	ultimately	fallen	short.

The	original	contribution	made	by	the	team	at	CERN	(and	others	in	the	OpenStack	community)	enabled	StackHPC	and	ION	Geophysical	to	deploy	infrastructure	for	seismic	processing	in	an	optimal
way.	To	this	original	work	StackHPC	added	experiences,	documentation	improvements	and	more	robust	handling	of	RAID	device	creation.	Even	small	contributions,	when	shared	back,	help	to
further	strengthen	the	project.

https://superuser.openstack.org/articles/openstack-Ironic-bare-metal-program-case-study-stackhpc/

SuperCloud

Introduction

SuperCloud	is	a	system	architecture	aiming	to	combine	Supercomputing	and	Cloud	Computing,	with	advantages	of	both	and	disadvantages	of	neither	approach.	It	was	proposed	by	Jacob	Anders,
who	at	the	time	worked	for	CSIRO.	SuperCloud	Proof-of-Concept	has	been	presented	at	the	OpenStack	Summit	in	Vancouver	(2018)	and	the	Open	Infrastructure	Summit	in	Denver	(2019),	and
provided	a	valuable	test	platform	for	establishing	performance	benchmarks	and	validating	various	Infrastructure-as-Code	workflows,	from	bare	metal	HPC-on-demand	to	ephemeral	hypervisors.

Rationale

Traditionally,	Supercomputers	used	to	be	focused	entirely	on	performance	(and	hence	running	directly	on	the	hardware)	at	the	expense	of	the	flexibility	they	offered.	In	a	supercomputing
environment,	users	can	expect	excellent	performance	but	rarely	have	the	luxury	of	bringing	their	own	operating	system	image	or	requesting	their	workload	to	run	in	an	isolated	network
environment.	Cloud	Computing	systems,	on	the	other	hand,	offer	users	nearly	unlimited	flexibility,	but	this	is	most	commonly	achieved	by	the	use	of	virtualization,	which	often	carries	significant
performance	penalty,	making	these	systems	less	suitable	for	hosting	High	Performance	Computing	(HPC)	workloads.

Implementation

To	address	these	challenges,	SuperCloud	builds	upon	Ironic	bare	metal	service	and	combines	it	with	InfiniBand	Software	Defined	Networking.	The	system	can	provision	cloud	instances	directly	on
the	hardware,	with	no	need	of	virtualization,	achieving	the	level	of	performance	previously	only	seen	on	classic	HPC	systems.	It	is	capable	of	doing	so	while	enabling	the	users	to	run	any	operating
system	and	workload	required,	provisioning	resources	in	software	defined	networks	which	can	be	isolated,	private,	shared	or	publicly	accessible	just	like	they	would	in	a	classic	virtualized	cloud
environment.

SuperCloud	is	a	foundation	for	the	Infrastructure-as-Code	tools	to	build	upon.	This	has	the	potential	of	enabling	the	users	to	programmatically	request	bare	metal	compute,	networking,	storage
and	software	resources	through	a	single,	unified	set	of	APIs.	This	is	a	key	capability	which	has	the	potential	to	consolidate	today’s	isolated	islands	of	Software	Defined	Networking	(SDN),	software
defined	storage	(SDS)	and	software-as-a-service	(SaaS)	and	enable	IT	teams	to	move	into	a	new	paradigm	of	building	systems	-	Software	Defined	Computing.	In	this	new	paradigm,	HPC	cluster
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management	software,	job	schedulers	and	high-performance	parallel	file	systems	move	up	the	stack	and	become	cloud	native	applications	which	can	run	side-by-side	with	hypervisors	running
VMs	and	container	nodes,	all	contained	within	one	standard	operating	environment.	At	the	same	time,	HPC	compute	and	HPC	storage	become	much	more	heterogeneous,	flexible	and	dynamic	-
and	can	not	only	consistently	deliver	top	performance,	but	also	quickly	adapt	to	ever-changing	needs	of	the	scientific	community,	addressing	the	challenges	posed	by	the	lack	of	flexibility.

Performance

In	the	SuperCloud	environment	and	configuration,	preliminary	benchmarks	showed	promising	results	-	CPU	performance	while	running	Linpack	was	approximately	19%	higher	in	bare	metal
compared	to	virtual	machines.	While	interconnect	bandwidth	was	only	marginally	higher	on	bare	metal	(approximately	1%)	due	to	the	use	of	SRIOV	technology	in	the	virtualized	environment,
interconnect	latency	was	far	superior	(approximately	23%	lower)	in	bare	metal	compared	to	virtual	machines.	A	summary	of	these	tests	is	included	in	the	diagram	below.

Sample	Workloads

To	demonstrate	the	capabilities	of	bare	metal	cloud,	consider	the	following	example	use	cases:

Infrastructure-as-Code	on	Bare	Metal

It	wouldn’t	be	far	from	the	truth	to	say	that	Cloud	Computing	was	born	out	of	the	need	for	automation.	Application	developers	required	a	method	of	programmatically	requesting	compute,
networking	and	storage	resources	through	a	set	of	API	endpoints	so	that	they	can	easily	deploy	and	scale	their	applications	with	no	involvement	of	the	infrastructure	team.	Virtualization	largely
helps	with	this	task	by	creating	a	convenient	abstraction	layer,	however,	until	recently,	the	situation	was	not	equally	simple	for	bare	metal	deployments.	While	many	fully	or	partially	automated
methods	of	hardware	deployment	existed,	most	were	limited	and/or	often	platform	specific,	and	were	not	able	to	match	the	feature	sets	of	cloud	environments.

The	addition	of	Ironic	bare	metal	provisioning	to	OpenStack	dramatically	changes	this	landscape.	Now,	standard	Infrastructure-as-Code	tools	developed	for	virtualized	clouds	can	be	used	to
provision	bare	metal.	Being	able	to	reuse	existing	tools	and	abstractions	is	very	powerful,	as	proven	by	the	examples	below.

ElastiCluster	-	Bare	Metal	HPC	on	Demand

Elasticluster	(https://elasticluster.readthedocs.io/en/latest/)	is	a	software	package	developed	at	the	University	of	Zurich,	which	can	deploy	on-demand,	software-defined	High	Performance
Computing	clusters	to	EC2,	GCE	and	OpenStack	clouds.	While	ElastiCluster	was	developed	with	virtualized	instances	in	mind,	an	Infrastructure-as-Code	approach	and	related	abstractions	make	it
very	easy	to	adapt	it	to	running	on	bare	metal.	The	only	modifications	required	are	specifying	a	“baremetal”	flavor	for	the	cluster	nodes	and	adjusting	the	timeout	values	to	cater	for	longer	boot
times	of	bare	metal	systems.

With	small	modifications,	OpenStack-based	HPC	on	demand	can	be	used	with	significantly	faster	bare	metal	compute,	without	sacrificing	network	multi-tenancy.	This	is	a	great	example	of	how
Ironic	allows	reuse	of	existing	code	in	a	new,	more	performant	context.

Ephemeral	Hypervisors

By	design,	a	SuperCloud	system	does	not	have	any	primary	virtualization	capability;	it	is	bare	metal	only.	However,	the	ability	to	run	bare	metal	compute	instances	means	that	a	secondary
virtualization	capability	can	be	added,	if	desired.	Hypervisors	can	be	provisioned	dynamically,	by	creating	bare	metal	instances	connected	to	the	internal	API	network	and	configuring	nova-
compute	service	appropriately.	The	major	benefit	of	combining	Infrastructure-as-Code	capability	with	bare	metal	provisioning	is	the	ability	to	build	and	maintain	one	pool	of	hardware	which	can	be
quickly	and	easily	reconfigured	to	fulfil	a	variety	of	very	different	roles.	While	a	user	might	want	to	run	a	number	of	high	performance	servers	in	an	ElastiCluster	system,	another	set	of	nodes	can
be	running	elastic	hypervisors	or	container	nodes.	This	has	the	potential	to	improve	resource	utilisation	and	reduce	operational	overheads	that	are	typically	observed	when	different	workloads
require	different	types	of	services	to	run	on	them.

Red	Hat30

As	covered	in	the	OpenStack	Baremetal	Logo	Program	case	study	SuperUser	article31	,	Redhat’s	use	of	Ironic	largely	came	from	the	need	to	help	support	customers’	needs	of	automating	the
installation	of	its	OpenStack	Platform32	product,	which	was	also	logical	because	of	the	use	of	the	TripleO33	project.	This	use	has	continued	to	grow	with	the	Metal334	project	to	help	facilitate	the
automated	installation	of	the	RedHat’s	OpenShift35	product.

But	Ironic	does	not	just	make	it	easier	for	our	installer	tools	to	provision	the	bare	metal	hardware	needed	for	clusters	being	deployed;	it	also	provides	an	API	and	mechanisms	to	support	a	variety
of	use	cases	from	within	a	running	cloud,	ultimately	allowing	cloud	users	to	gain	access	to	the	dedicated	resources	they	need	in	an	API	driven,	repeatable	and	reliable	way.

Airship36

The	goals	of	Airship	are	to	enable	operators	to	predictably	deliver	raw	infrastructure	as	a	resilient	cloud	and	to	efficiently	manage	the	life	cycle	of	the	resulting	platform,	following	cloud-native
principles	such	as	real-time	upgrades	with	no	downtime	to	services.	To	achieve	this,	Airship	integrates	best-in-breed	open	source	tooling,	presenting	an	easy-to-use,	flexible	and	declarative
interface	to	infrastructure	management.

A	fundamental	piece	of	this	puzzle	is	the	provisioning	and	management	of	bare	metal	servers.	Airship	initially	used	a	declarative	wrapper	around	a	traditional	package-based	bare	metal
provisioner	(MaaS).	However,	this	did	not	provide	the	desired	immutability	and	predictability	of	image-based	deployments.	To	address	this,	Airship	2.0	integrates	the	Metal3	project.	Metal3
presents	a	declarative	model	for	bare	metal,	and	drives	Ironic	(in	standalone	mode)	to	efficiently	realize	provisioning.	To	further	model	Kubernetes	clusters	declaratively,	Airship	uses	the
Kubernetes	Cluster	API	(CAPI).	CAPI	broadens	Airship’s	goal	to	be	flexible,	general-purpose	tooling	by	providing	implementations	that	stand	up	Kubernetes	clusters	across	the	range	of	public	cloud
providers,	OpenStack	clusters	and	bare	metal	provisioning.

From	an	Airship	perspective,	the	net-net	is	that	CAPI	allows	it	to	manage	infrastructure	and	workloads	consistently	across	these	different	environments.	This	opens	up	use	cases	such	as	sharing
Containerized	Network	Function	(CNF)	workloads	across	private	bare	metal	clusters	and	elastic	public	clouds,	as	well	as	many	others	that	were	not	previously	possible.	The	Airship	and	Metal3
communities	have	worked	closely	to	ensure	that	Metal3	integrates	as	seamlessly	as	the	bare	metal	provider	for	the	Kubernetes	Cluster	API.

Airship’s	need	for	bare	metal	capabilities	was	driven	by	many	of	the	benefits	mentioned	elsewhere	in	this	whitepaper	–	in	particular,	the	need	to	squeeze	every	last	bit	of	performance	out	of
physical	assets,	as	well	as	the	ability	to	physically	locate	the	infrastructure	close	to	end	users.	These	are	critical	ingredients	for	a	successful,	low-latency	5G	network,	which	was	the	initial	key	use
case	for	Airship.	In	addition,	as	detailed	in	the	Edge	Usage	Pattern	below,	the	ability	to	drive	secure,	remote	provisioning	over	the	WAN	led	Airship	2.0	to	adopt	a	Redfish-based	bootstrap
procedure.

Finally,	infrastructure	is	nothing	without	a	workload	to	utilize	it.	Airship	provides	a	declarative	YAML	interface	and	CLI	to	manage	the	lifecycle	of	any	Helm-based	or	raw	Kubernetes	manifest-based
workloads,	unified	with	its	management	of	servers,	Kubernetes	nodes	and	network	configuration.	It	provides	the	Treasuremap	project,	which	has	reusable	configuration	for	common	workloads
such	as	OpenStack,	Logging	and	Monitoring	and	Databases.	Airship	2.0	is	reframing	Treasuremap	into	a	library	of	composable	intent	for	operators	to	rapidly	consume	and	customize	to	meet	their
unique	needs.

And	More!

Many	more	companies	use	Ironic	in	production	as	recorded	in	various	other	Superuser	articles.

Platform939

Platform	9	provides	a	software-as-a-service-based	service	to	deploy	and	operate	OpenStack	hybrid	clouds	for	KVM,	VMware	and	public	cloud	environments.
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https://superuser.openstack.org/articles/Ironic-bare-metal-case-study-platform9/

ChinaMobile40

ChinaMobile	is	a	leading	telecommunications	provider	in	mainland	China.

https://superuser.openstack.org/articles/openstack-Ironic-bare-metal-program-case-study-china-mobile/

VEXXHOST41

VEXXHOST	provides	infrastructure-as-a-service	OpenStack	public	cloud,	private	cloud,	and	hybrid	cloud	solutions	to	customers,	from	small	businesses	to	enterprises	across	the	world.

https://superuser.openstack.org/articles/openstack-Ironic-bare-metal-program-case-study-vexxhost/

The	Future

Open	Infrastructure

When	we	look	at	the	foundations	of	infrastructure,	common	patterns	exist.	These	patterns	exist	in	large	part	due	to	standards	and	ways	of	operation	that	became	the	standard	or	de-facto
standard.	In	a	sense,	it	comes	down	to	form	following	function,	just	like	function	following	form.	One	could	almost	look	at	it	as	a	yin-yang	relationship	or	each	conductor	of	a	twisted-pair	cable.	It	is
hard	to	believe	that	twisted-pair	cable,	invented	in	188142	,	is	still	used	to	this	day	because	it	provides	a	wonderful	foundation.

And	so,	it	is	not	impossible	to	imagine	a	future	where	these	patterns	continue	to	exist	as	there	is	no	one	singular	vendor	or	supplier,	nor	can	there	be	in	our	society.	And	realistically,	the	only	path
technology	can	truly	take	is	for	further	continuous	innovation	and	democratization.	This	is	similar	to	how	the	quality	of	twisted-pair	cable	has	improved	over	the	many	years	it	has	existed	to	meet
the	needs	of	what	was	built	on	top	of	the	foundation	it	provides.

With	no	singular	vendor	or	solution,	and	with	the	very	nature	of	humanity	to	have	uniqueness,	the	necessity	of	open	is	realized.	Open	provides	the	common	ground,	the	level	playing	field.	The
context	of	common	need	to	work	together	is	what	binds	us	and	stresses	the	need	for	open-ness.	Ultimately,	regardless	of	if	we	build	composable	systems,	ships	to	the	moon	or	start	missions	to
populate	Mars	with	cats,	the	need	to	work	together	with	an	Open	Infrastructure	remains	a	necessity	for	success.

In	the	Short	Term

While	we	may	all	wish	to	populate	the	planet	Mars	with	cats,	fundamental	layers	of	access	and	management	are	needed	to	serve	as	the	structure	and	mechanisms.	Standards	like	Redfish	will	only
bring	consistency	across	the	vendors	and	consumers	that	wish	to	engage	in	that	effort	through	utilizing	the	realization	that	the	common	means	allow	the	equipment	to	be	leveraged	faster	and
more	efficiently.	That	does	not	discount	others’	efforts	that	are	contrary	to	standards,	because	they	are	also	engines	of	innovation.

As	we	look	forward	to	the	management	of	bare	metal,	the	common	feature	set	as	driven	by	the	market	is	what	brings	mutual	value	to	everyone.	This	is	where	tools	like	Ironic	bring	tremendous
value,	seeking	to	enable	users	and	operators	to	leverage	the	common	feature	set	through	an	open	common	mechanism.

Like	any	effort,	this	does	take	substantial	dedication	and	commitment	to	the	contributors	of	Ironic.	The	common	use	case,	the	common	means	and	the	common	need	will	continue	to	drive	us
forward.
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