
The Notorious M.T.U.
Kevin Benton - Mirantis
Sean Collins - Mirantis

Ihar Hrachyshka - Red Hat
Matt Kassawara - IBM

Objectives
● Learn about MTU in physical networks
● Learn about nuances of virtual networks that impact MTU
● Review confusing MTU options and workarounds/hacks in releases prior to

Mitaka
● Apply MTU knowledge to reveal issues in OpenStack (neutron and nova)

including several common deployment cases
● Learn about MTU solution in Mitaka

2

What is MTU?
● Largest network layer (3) data unit that underlying data link layer (2) can pass

between transmitter and receiver
○ Commonly, the largest IP packet that can fit into available Ethernet frame
○ Layer 3 must dynamically adjust to changes at layer 2

● Typically 1500 bytes for 802.3 (Ethernet), although many devices support
“jumbo frames” up to approximately 9000 bytes

● Provider/carrier network devices often support over 9000 bytes to account for
overhead from MPLS, 802.1ad (Q-in-Q), etc.

3

IP Path MTU Discovery (PMTUD)
● Automatically determines the smallest MTU of network segments between

transmitter and receiver
● Operates at IP layer using ICMP

○ Routers (3), not switches (2), handle MTU changes between segments
○ ICMP must pass freely between endpoints!

4

IP PMTUD - IPv4
● IPv4 supports fragmentation, but it can impact performance
● Operation

○ Transmitter generates a packet using the MTU of the underlying network interface and sets
“Don’t Fragment” (DF) bit

○ If a segment between transmitter and receiver contains a smaller MTU, the router prior to that

segment returns an ICMP “Fragmentation Needed” (Type 3, Code 4) message to the sender
that contains the smaller MTU value

○ Operating system tracks MTU value for the receiver
○ Transmitter generates packet again using the smaller MTU and sets DF bit

○ Cycle repeats until the transmitter discovers the smallest MTU value between transmitter and
receiver

5

IP PMTUD - IPv6
● IPv6 does not support fragmentation
● Operation

○ Transmitter generates a packet using the MTU of the underlying network interface

○ If a segment between transmitter and receiver contains a smaller MTU, the router prior to that

segment returns an ICMP “Packet Too Big” (Type 2) message to the sender that contains the
smaller MTU value

○ Operating system tracks MTU value for the receiver
○ Transmitter generates packet again using the smaller MTU

○ Cycle repeats until the transmitter discovers the smallest MTU value between transmitter and
receiver

6

MTU changes at layer 2 = bad

7

MTU changes at layer 3 = good

8

Virtual networks and MTU
● Flat

○ Uses IEEE 802.3 (Ethernet)
○ Each flat network requires a unique physical network
○ Instance (VM) network interface can use underlying physical network MTU

● VLAN
○ Uses IEEE 802.1q (Ethernet with VLAN tagging)

■ Adds 32-bit field to Ethernet header containing a 12-bit VLAN ID and some other
information

■ Effectively adds 4 bytes to Ethernet frame
■ Does not impact payload size
■ Multiple logical networks, each using a unique VLAN ID, can share a physical network

○ Instance (VM) network interface can use underlying physical network MTU

9

Virtual networks and MTU
● Overlay

○ Uses an encapsulation protocol such as VXLAN or GRE to pass arbitrary 802.3 Ethernet
frames or IP packets via IP (and sometimes TCP/UDP)

○ Outer (native) IP headers, sometimes TCP/UDP headers, and protocol metadata create

overhead that consumes a portion of the outer IP packet, thus reducing space available to
devices using the overlay network

○ Instance (VM) network interface must use underlying physical network MTU minus the
overhead

10

 VXLAN protocol
● Uses UDP
● Encapsulates inner 802.3 Ethernet frame
● Calculate overhead for IPv4 using 1500-

byte MTU
○ Subtract outer IP header (20 bytes) = 1480

bytes
○ Subtract UDP header (8 bytes) = 1472 bytes

○ Subtract VXLAN header (8 bytes) = 1464
bytes

○ Subtract inner 802.3 Ethernet header (14

bytes) = 1450 bytes for IP available to device
using overlay network

IP Header

 UDP Header

VXLAN Header

Inner Ethernet Header

Instance MTU

8 bytes

8 bytes

14 bytes

1450 bytes

V
X

LA
N

 O
verhead

11

20 bytes

 GRE protocol
● Uses unique transport protocol (47)
● Encapsulates inner 802.3 Ethernet frame
● Calculate overhead for IPv4 using 1500-

byte MTU
○ Subtract outer IP header (20 bytes) = 1480 bytes
○ Subtract GRE header (8 bytes) = 1472 bytes

○ Subtract inner Ethernet header (14 bytes) = 1458

bytes for IP available to device using overlay
network

IP Header

 GRE Header

Inner Ethernet Header

Instance MTU

20 bytes

8 bytes

14 bytes

1458 bytes

G
R

E

O
verhead

12

Interesting observations
● Linux

○ Automatically configures tunnel network interface MTU

by subtracting overlay protocol overhead from the
underlying physical network interface MTU

○ Automatically configures bridge network interface MTU
to use the lowest MTU of all ports (devices) on the bridge

○ Permits ends of virtual Ethernet (veth) pairs to use
different MTUs

● Open vSwitch
○ Internally uses arbitrarily large MTU
○ Ignores MTU of bridge interface on host

1500

9000

9000
Linux
Bridge

MTU
1500

Forces downgrade
of entire bridge

1500

9000

9000

OVS

No MTU

Silently discards packets larger
than 1500 to this interface

13

OpenStack MTU problems
● Neutron lacks obvious and consistent support for MTUs larger than 1500

bytes
● By default, nova creates security group bridges and interfaces using a 1500-

byte MTU
● Features claiming to address MTU involve

confusing and often useless options
○ advertise_mtu (neutron core)
○ physical_network_mtus (ML2 plug-in)
○ path_mtu (ML2 plug-in)
○ segment_mtu (ML2 plug-in)
○ veth_mtu (Open vSwitch agent)
○ network_device_mtu (neutron and nova core)

● Only some plug-ins support the MTU API extension
● Documentation… what documentation? 14

OpenStack MTU hacks
● Folsom to Juno

○ [Environment] Implement MTU larger than 1500 bytes on underlying physical network while
leaving virtual network components at 1500 bytes to account for overlay protocol overhead

■ Instances on any network can use 1500 bytes

○ [Neutron] Manually configure Dnsmasq to provide a smaller MTU that accounts for overlay
protocol overhead

■ Also reduces MTU for instances on flat and VLAN networks

○ [Neutron/Nova] Attempt to use the network_device_mtu option to configure MTU of virtual
network components

■ Implementation varies by release, plug-in/agent, network types, and combination of
other options

○ [Neutron] For the Open vSwitch plug-in/agent with veth interfaces, attempt to use the
veth_mtu option

15

OpenStack MTU hacks
● Kilo and Liberty

○ [Neutron+ML2] Configure Dnsmasq to provide a smaller MTU that accounts for overlay
protocol overhead

■ Combination of path_mtu and advertise_mtu options
■ Only impacts instances on overlay networks

○ [ML2] Attempt to use variety of additional options that configure MTU for some but not all
virtual network components
■ segment_mtu
■ physical_network_mtus

○ [Neutron/Nova] Attempt to use the network_device_mtu option with or without additional
options

16

Common use cases

17

● Assume proper configuration of underlying physical network
● Assume use of Liberty
● Assume VXLAN overlay networks with IPv4 endpoints

○ 50 bytes of overhead

● Cases 1-4 only use path_mtu and advertise_mtu options, if available, to
configure instance network interface MTU

● Cases 5-6 also use the network_device_mtu option

Case 1: Open vSwitch agent with 1500-byte MTU
advertise_mtu = true and path_mtu = 1500

18

Case 2: Open vSwitch agent with 9000-byte MTU
advertise_mtu = true and path_mtu = 9000

19

Case 3: Linux bridge agent with 1500-byte MTU
advertise_mtu = true and path_mtu = 1500

20

Case 4: Linux bridge agent with 9000-byte MTU
advertise_mtu = true and path_mtu = 9000

21

Case 5: Open vSwitch agent with 9000-byte MTU
network_device_mtu = 9000

22

Case 6: Linux bridge agent with 9000-byte MTU
network_device_mtu = 9000

23

OpenStack MTU solution (Mitaka+)
● Neutron

○ Replace variety of options with a single option suitable for most environments
○ Consistently calculate and set appropriate MTU for all virtual network components
○ By default, provide useful (non-zero) MTU value in API

● Nova
○ Use the MTU value that neutron provides via RPC for security group bridges and interfaces

● os-vif library
○ Replaces nova VIF code
○ Contains essentially the same MTU implementation that currently exists in nova

24

OpenStack MTU solution (Mitaka+)
● Implementation details

○ Move segment_mtu option from ML2 to neutron and rename to global_physnet_mtu
■ Resides in [DEFAULT] section
■ Visible to all plug-ins
■ Change default value from 0 to 1500

■ Yields calculation of correct MTU for virtual network components in nearly all
environments

○ By default, enable advertise_mtu option in neutron
■ Provides correct MTU to instances via DHCP (IPv4) or RA (IPv6)

○ Deprecate path_mtu option in ML2
■ Neutron review #302089

○ Keep path_mtu and physical_network_mtus options in ML2

○ Supports rare environments that implement unique MTU value for each underlying
physical or logical network 25

https://review.openstack.org/#/c/302089/

OpenStack MTU solution (Mitaka+)
● Not all rainbows and unicorns

○ The global_physnet_mtu option came after a separate effort to use “sane” values for

other MTU options. As a result, the path_mtu value currently overrides the
global_physnet_mtu value for overlay networks.

■ Use the same value for global_physnet_mtu and path_mtu
■ See neutron review #308989

○ Does not recalculate MTU for existing virtual networks
■ Manually update MTU values in the database
■ Only impacts new devices belonging to the same virtual network
■ Use with caution

● For your sanity, use single consistent MTU value for entire underlying
physical network

26

https://review.openstack.org/#/c/308989/

But I can’t switch to Mitaka!
● Backporting primary resolution to Liberty

○ Nova review #285710
○ Neutron review #305782, review #308229
○ Requires using ML2 and the variety of additional options introduced in Kilo

● In addition to Liberty backports
○ [Neutron] Enable advertise_mtu
○ [ML2] set segment_mtu to reference underlying physical network MTU

■ Note location and name change for upgrade purposes
○ [Neutron/Nova] Unset network_device_mtu
○ [Neutron] Update ‘mtu’ column in ‘networks’ table and recreate networks

27

https://review.openstack.org/#/c/285710/
https://review.openstack.org/#/c/305782/
https://review.openstack.org/308229

What about Kilo and earlier releases?

28

What about Kilo and earlier releases?

Seriously, plan an upgrade. OpenStack, especially Neutron, has come a long way
in just a few releases.

29

Next steps
● Recalculate MTU for existing networks

○ Bug #1556182

● Remove network_device_mtu option from neutron and nova
○ Currently deprecated in nova

● Adopt os-vif to communicate MTU values between neutron and nova
● Deployment tools should remove MTU hacks

30

https://bugs.launchpad.net/neutron/+bug/1556182
https://bugs.launchpad.net/neutron/+bug/1556182

Questions?

31

