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Objectives
● Learn about MTU in physical networks
● Learn about nuances of virtual networks that impact MTU
● Review confusing MTU options and workarounds/hacks in releases prior to 

Mitaka
● Apply MTU knowledge to reveal issues in OpenStack (neutron and nova) 

including several common deployment cases
● Learn about MTU solution in Mitaka
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What is MTU?
● Largest network layer (3) data unit that underlying data link layer (2) can pass 

between transmitter and receiver
○ Commonly, the largest IP packet that can fit into available Ethernet frame
○ Layer 3 must dynamically adjust to changes at layer 2

● Typically 1500 bytes for 802.3 (Ethernet), although many devices support 
“jumbo frames” up to approximately 9000 bytes

● Provider/carrier network devices often support over 9000 bytes to account for 
overhead from MPLS, 802.1ad (Q-in-Q), etc.
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IP Path MTU Discovery (PMTUD)
● Automatically determines the smallest MTU of network segments between 

transmitter and receiver
● Operates at IP layer using ICMP

○ Routers (3), not switches (2), handle MTU changes between segments
○ ICMP must pass freely between endpoints!
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IP PMTUD - IPv4
● IPv4 supports fragmentation, but it can impact performance
● Operation

○ Transmitter generates a packet using the MTU of the underlying network interface and sets 
“Don’t Fragment” (DF) bit

○ If a segment between transmitter and receiver contains a smaller MTU, the router prior to that 

segment returns an ICMP “Fragmentation Needed” (Type 3, Code 4) message to the sender 
that contains the smaller MTU value

○ Operating system tracks MTU value for the receiver
○ Transmitter generates packet again using the smaller MTU and sets DF bit

○ Cycle repeats until the transmitter discovers the smallest MTU value between transmitter and 
receiver
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IP PMTUD - IPv6
● IPv6 does not support fragmentation
● Operation

○ Transmitter generates a packet using the MTU of the underlying network interface

○ If a segment between transmitter and receiver contains a smaller MTU, the router prior to that 

segment returns an ICMP “Packet Too Big” (Type 2) message to the sender that contains the 
smaller MTU value

○ Operating system tracks MTU value for the receiver
○ Transmitter generates packet again using the smaller MTU

○ Cycle repeats until the transmitter discovers the smallest MTU value between transmitter and 
receiver
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MTU changes at layer 2 = bad
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MTU changes at layer 3 = good
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Virtual networks and MTU
● Flat

○ Uses IEEE 802.3 (Ethernet)
○ Each flat network requires a unique physical network
○ Instance (VM) network interface can use underlying physical network MTU

● VLAN
○ Uses IEEE 802.1q (Ethernet with VLAN tagging)

■ Adds 32-bit field to Ethernet header containing a 12-bit VLAN ID and some other 
information

■ Effectively adds 4 bytes to Ethernet frame
■ Does not impact payload size
■ Multiple logical networks, each using a unique VLAN ID, can share a physical network

○ Instance (VM) network interface can use underlying physical network MTU
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Virtual networks and MTU
● Overlay

○ Uses an encapsulation protocol such as VXLAN or GRE to pass arbitrary 802.3 Ethernet 
frames or IP packets via IP (and sometimes TCP/UDP)

○ Outer (native) IP headers, sometimes TCP/UDP headers, and protocol metadata create 

overhead that consumes a portion of the outer IP packet, thus reducing space available to 
devices using the overlay network

○ Instance (VM) network interface must use underlying physical network MTU minus the 
overhead
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                 VXLAN protocol
● Uses UDP
● Encapsulates inner 802.3 Ethernet frame
● Calculate overhead for IPv4 using 1500-

byte MTU
○ Subtract outer IP header (20 bytes) = 1480 

bytes
○ Subtract UDP header (8 bytes) = 1472 bytes

○ Subtract VXLAN header (8 bytes) = 1464 
bytes

○ Subtract inner 802.3 Ethernet header (14 

bytes) = 1450 bytes for IP available to device 
using overlay network
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                      GRE protocol
● Uses unique transport protocol (47)
● Encapsulates inner 802.3 Ethernet frame
● Calculate overhead for IPv4 using 1500-

byte MTU
○ Subtract outer IP header (20 bytes) = 1480 bytes
○ Subtract GRE header (8 bytes) = 1472 bytes

○ Subtract inner Ethernet header (14 bytes) = 1458 

bytes for IP available to device using overlay 
network
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Interesting observations
● Linux

○ Automatically configures tunnel network interface MTU 

by subtracting overlay protocol overhead from the 
underlying physical network interface MTU

○ Automatically configures bridge network interface MTU 
to use the lowest MTU of all ports (devices) on the bridge

○ Permits ends of virtual Ethernet (veth) pairs to use 
different MTUs

● Open vSwitch
○ Internally uses arbitrarily large MTU
○ Ignores MTU of bridge interface on host
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13



OpenStack MTU problems
● Neutron lacks obvious and consistent support for MTUs larger than 1500 

bytes
● By default, nova creates security group bridges and interfaces using a 1500-

byte MTU
● Features claiming to address MTU involve

confusing and often useless options
○ advertise_mtu (neutron core)
○ physical_network_mtus (ML2 plug-in)
○ path_mtu (ML2 plug-in)
○ segment_mtu (ML2 plug-in)
○ veth_mtu (Open vSwitch agent)
○ network_device_mtu (neutron and nova core)

● Only some plug-ins support the MTU API extension
● Documentation… what documentation? 14



OpenStack MTU hacks
● Folsom to Juno

○ [Environment] Implement MTU larger than 1500 bytes on underlying physical network while 
leaving virtual network components at 1500 bytes to account for overlay protocol overhead

■ Instances on any network can use 1500 bytes

○ [Neutron] Manually configure Dnsmasq to provide a smaller MTU that accounts for overlay 
protocol overhead

■ Also reduces MTU for instances on flat and VLAN networks

○ [Neutron/Nova] Attempt to use the network_device_mtu option to configure MTU of virtual 
network components

■ Implementation varies by release, plug-in/agent, network types, and combination of 
other options

○ [Neutron] For the Open vSwitch plug-in/agent with veth interfaces, attempt to use the 
veth_mtu option
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OpenStack MTU hacks
● Kilo and Liberty

○ [Neutron+ML2] Configure Dnsmasq to provide a smaller MTU that accounts for overlay 
protocol overhead

■ Combination of path_mtu and advertise_mtu options
■ Only impacts instances on overlay networks

○ [ML2] Attempt to use variety of additional options that configure MTU for some but not all 
virtual network components
■ segment_mtu
■ physical_network_mtus

○ [Neutron/Nova] Attempt to use the network_device_mtu option with or without additional 
options
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Common use cases
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● Assume proper configuration of underlying physical network
● Assume use of Liberty
● Assume VXLAN overlay networks with IPv4 endpoints

○ 50 bytes of overhead

● Cases 1-4 only use path_mtu and advertise_mtu options, if available, to 
configure instance network interface MTU

● Cases 5-6 also use the network_device_mtu option



Case 1: Open vSwitch agent with 1500-byte MTU
advertise_mtu = true and path_mtu = 1500
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Case 2: Open vSwitch agent with 9000-byte MTU
advertise_mtu = true and path_mtu = 9000
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Case 3: Linux bridge agent with 1500-byte MTU
advertise_mtu = true and path_mtu = 1500
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Case 4: Linux bridge agent with 9000-byte MTU
advertise_mtu = true and path_mtu = 9000
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Case 5: Open vSwitch agent with 9000-byte MTU
network_device_mtu = 9000
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Case 6: Linux bridge agent with 9000-byte MTU
network_device_mtu = 9000
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OpenStack MTU solution (Mitaka+)
● Neutron

○ Replace variety of options with a single option suitable for most environments
○ Consistently calculate and set appropriate MTU for all virtual network components
○ By default, provide useful (non-zero) MTU value in API

● Nova
○ Use the MTU value that neutron provides via RPC for security group bridges and interfaces

● os-vif library
○ Replaces nova VIF code
○ Contains essentially the same MTU implementation that currently exists in nova
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OpenStack MTU solution (Mitaka+)
● Implementation details

○ Move segment_mtu option from ML2 to neutron and rename to global_physnet_mtu
■ Resides in [DEFAULT] section
■ Visible to all plug-ins
■ Change default value from 0 to 1500

■ Yields calculation of correct MTU for virtual network components in nearly all 
environments

○ By default, enable advertise_mtu option in neutron
■ Provides correct MTU to instances via DHCP (IPv4) or RA (IPv6)

○ Deprecate path_mtu option in ML2
■ Neutron review #302089

○ Keep path_mtu and physical_network_mtus options in ML2

○ Supports rare environments that implement unique MTU value for each underlying 
physical or logical network 25

https://review.openstack.org/#/c/302089/


OpenStack MTU solution (Mitaka+)
● Not all rainbows and unicorns

○ The global_physnet_mtu option came after a separate effort to use “sane” values for 

other MTU options. As a result, the path_mtu value currently overrides the 
global_physnet_mtu value for overlay networks.

■ Use the same value for global_physnet_mtu and path_mtu
■ See neutron review #308989

○ Does not recalculate MTU for existing virtual networks
■ Manually update MTU values in the database
■ Only impacts new devices belonging to the same virtual network
■ Use with caution

● For your sanity, use single consistent MTU value for entire underlying 
physical network
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But I can’t switch to Mitaka!
● Backporting primary resolution to Liberty

○ Nova review #285710
○ Neutron review #305782, review #308229
○ Requires using ML2 and the variety of additional options introduced in Kilo

● In addition to Liberty backports
○ [Neutron] Enable advertise_mtu
○ [ML2] set segment_mtu to reference underlying physical network MTU

■ Note location and name change for upgrade purposes
○ [Neutron/Nova] Unset network_device_mtu
○ [Neutron] Update ‘mtu’ column in ‘networks’ table and recreate networks
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What about Kilo and earlier releases?
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What about Kilo and earlier releases?

Seriously, plan an upgrade. OpenStack, especially Neutron, has come a long way 
in just a few releases.
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Next steps
● Recalculate MTU for existing networks

○ Bug #1556182

● Remove network_device_mtu option from neutron and nova
○ Currently deprecated in nova

● Adopt os-vif to communicate MTU values between neutron and nova
● Deployment tools should remove MTU hacks
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Questions?
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