

OpenStack Identity Federation

Many thanks to:

Who are we?

Joe Savak – Rackspace Product Manager (° °)⍸

Brad Topol – IBM Distinguished Engineer ¯_(ツ)_/¯

Jorge Williams – Rackspace Principal Architect ●~*

Steve Martinelli – IBM Software Developer, Keystone Core (°□°) ╯ ╯┻━┻

Federwhation?
The mechanisms to establish trusts between identity providers and
OpenStack clouds enabling a user to:

• Securely access resources (servers, files, volumes, dbs. unicorns,
etc)

• Across multiple endpoints provided in multiple authorized clouds

• With their single credential

• Maintained in a trusted identity provider

• Without having to provision additional identities or re-login all the
time

(ADFS, Tivoli Federated IdM, Shibboleth are other federated identity
implementations)

Federwhytion?

1. Any time a new identity is provisioned, it is a security risk.

2. It is a burden on clients to deal with multiple tokens across multiple
cloud service providers.

3. We spend too much time logging in or going through forget password
workflows.

4. We spend too much time administrating identities in various service
providers. (Imagine administration of a full university or enterprise with
identities always in flux)

5. The best test of interoperability in the cloud is to enable one identity
access across multiple clouds.

6. Removes a blocker to cloud brokering and multi-cloud workload
management.

SAML, OpenID Connect, AbFab?

There are many federation protocols out there.

Each with their own pros & cons.

So keystone federation was made to be extensible to allow various
protocol support.

• SAML2 ← supported in icehouse, determined at HK summit to support this
first. As part of icehouse, we use Shibboleth to avoid re-inventing the wheel for
the SAML authentication handshake.

• OpenID connect (based on OAuth2)← in the works, Juno

• AbFab ← accepting pull requests.

The big picture – Icehouse –
federation with identity providers

Acme identity
 provider

Keystone 1

Nova 1 Swift 1

With your company credentials, you can access resources and execute APIs in an OpenStack
cloud without having to provision a new identity for that cloud.
Just keep using your company-issued identity!

 R2D2 could be:
● an access manager like OneLogin or NetIQ Access Manager
● A federation-enabled openstack client (using Enhanced Client or Proxy, possibly)

 both would need to speak the supported federation protocol for the cloud.

(2
) S

A
M

L
R

es
po

ns
e

(1
)

S
A

M
L

R
eq

ue
st

(3) SAML response

(4) Unscoped Token

Pre-reqs:
• Keystone deployed as part of apache

and mod_shib enabled for SAML 2 handshake
Many implementors use Apache already.
Per Keystone core: Keystone is focusing on
being a proxy instead of a provider

(5) Scope token: Get

projects/domains

and request scoped token

Via access
 manager

Feedback wanted!

Detailed use cases are always welcome :)

Contribute back to the community!
● Review the API spec
● Propose an API spec
● Review the code
● Review the docs
● Create a guide
● Play with the code
● Test the code with your development environment
● Etc...

Federated Identity is easily one of the most visible blueprints the Keystone team has
done in a while, as a community, let's make sure it's awesome!

https://blueprints.launchpad.net/keystone/+spec/keystone-to-keystone-federation

Let's talk Juno & beyond

https://blueprints.launchpad.net/keystone/+spec/keystone-to-keystone-federation

The big picture – Juno & beyond -
Federation with service providers

Keystone 2

Nova 2

(6) Create server using

 Token from keystone1

Keystone 1

Nova 1 Swift 1

(7
)

V
al

id
at

e
to

ke
n

(8) decode
token origin

(9
)

Fe
de

ra
tio

n
R

eq
ue

st
(v

ia
 S

A
M

L
or

ot

he
r p

ro
to

co
l)

(1
0)

 F
ed

er
at

io
n

R
es

po
ns

e

(1
1)

 T
ok

en

V
al

id

With your company credentials, you can access
resources and execute APIs in many OpenStack
clouds without having to provision a new
identity for each cloud

And – without having to know about the different
Federation protocols that each cloud supports

Acme identity
 provider

(1) S
A

M
L

R
equest

(3) SAML response

(4) Unscoped Token

(2
)

S
A

M
L

R
e

sp
o

n
se

(5) Scope token: Get projects/domains

and request scoped token

Juno & beyond
Wait... decode token??

decode
token origin

Keystone 2

A federated token needs to include information about where the
originating authentication occurred. This is needed for keystone to
validate the asserted identity and understand what access the identity
should have.

1 potential solution building off of what is supported in icehouse:
Token metadata includes: {originating-identity-provider aka issuer}/{protocol}/{subject}

Need to see how this works with PKI.

Allows auditing support across multiple clouds!
Potentially visible by emitting CADF events

Juno & beyond
Wait – how do clouds trust each other?

CLOUD 2

Keystone 2

Nova 2

I support nova.
It's here:

https://nova2.cloud2.com/

CLOUD 1

Keystone 1

Nova 1 Swift 1

I support nova and swift.
They are here:

https://nova1.cloud1.com/
https://swift1.cloud1.com/

I trust cloud2 as a service provider
So any identities authenticating

through me should be given
Cloud 2 endpoints

I trust cloud1 as an identity provider
So when they say that the user was

authenticated, I verify it was them saying
that and then believe them.

Trusts are setup out of band, during a provisioning process where public keys
are exchanged between two (or more) parties.

One service catalog is returned containing all accessible endpoints across
clouds when a user authenticates

Juno & beyond
The big picture – Putting it all together
Federation with identity providers &
service providers

Keystone 1

Keystone 2

Keystone 3

Keystone 4

Nova 1

Nova 2

Swift 1 Swift 2

Trove 1

IBM TFIM

Acme identity
 provider Microsoft

AD
SAML

OpenID-connect

AbFab

User
& pass

No client changes
needed to
get federated access

Officially, from the Icehouse release notes:

“The OS-FEDERATION extension allows Keystone to consume federated authentication
via an Apache module for multiple Identity Providers, and mapping federated attributes
into OpenStack group-based role assignments” – Dolph Mathews (Keystone PTL)

Outline:

● New Keystone OS-FEDERATION APIs
● Identity Providers
● Protocols
● Mappings

● Motivation for Mappings
● Setting up OpenStack Groups
● SAML Assertions
● Creating a Mapping

● Getting In!
● Requesting an unscoped token
● Listing available resources
● Requesting a scoped token

What was delivered in Icehouse?

~=

New Keystone OS-FEDERATION APIs

Identity Providers: /OS-FEDERATION/identity_providers/{idp_id}

● An Identity Provider is a third party service that is trusted by the Identity API to authenticate identities.
● Register SAML Identity Providers such as ADFS or Tivoli Federated Identity Manager.

{
 "identity_provider": {
 "description": "Stores ACME identities",
 "enabled": true,
 "id": "ACME",
 }
}

● description (string) - Describes the identity provider.
● enabled (boolean) - Indicates whether this identity provider should accept federated authentication

requests.
● id (string) - User-defined unique id to identify the identity provider.

New Keystone OS-FEDERATION APIs

Protocols:
/OS-FEDERATION/identity_providers/{idp_id}/protocols/{protocol_id}

● A Protocol entry contains information that dictates which mapping rules to use for a given incoming
request. An IdP may have multiple supported protocols.

● Currently, only the SAML 2.0 federation protocol is supported. However, the framework is extensible
to support other federation protocols, i.e.: OpenID, WS-Federation, SAML 1.0.

● Identity Providers can communicate in many protocols, so associate an Identity Provider with a
Mapping, based on a protocol.

{
 "protocol": {
 "id": "saml2",
 "mapping_id": "xyz234",
 }
}

● mapping_id (string) - Indicates which mapping should be used to process federated authentication
requests.

● id (string) - User-defined unique id to identify the protocol.

New Keystone OS-FEDERATION APIs

Mappings: /OS-FEDERATION/mappings/{mapping_id}

● A mapping is a set of rules to map federation protocol attributes to Identity API objects. An Identity
Provider can have a single mapping specified per Protocol. A Mapping is simply a list of rules.

● A mapping is a method to translate remote attributes (from an Identity Provider) to local attributes
(Keystone entities).

● Mappings are created as a top level resource so as to enable re-use between Identity Providers.

{
 "mapping": {
 "id": "ACME_MAP",
 "rules": [...],
 }
}

● rules (list) - Each object contains a rule for mapping attributes to Identity API concepts. A rule contains
a remote attribute description and the destination local attribute.

● id (string) - User-defined unique id to identify the mapping.

More on this soon!More on this soon!

Motivation for Mapping

● Setting the scene:
● Classic Keystone, does user stevemar, have role developer, on project services?

● Or does the requesting user belong to group that has role developer, on project services?
● Admin means something different to CNN than it does to Coca Cola Co.

● Neither mean anything in Keystone for federated users.

● Identifying the problem:
● Federated users do not exist in Keystone, they exist on an Identity Provider.
● An Identity Provider will only return attributes related to an identity.
● We don't have a solution for mapping what an IdP sees to what Keystone knows.

● Finding a solution:
● Create a mapping to handle the translation and establish relationships between Keystone attributes and

Identity Provider attributes.
● Initially, a mapping would be a 1:1 relationship between Identity Provider attributes and Keystone groups.
● A federated user can authenticate with an Identity Provider, and be mapped to a Keystone group, and will

inherit the roles from the group.

Setting up OpenStack for Groups

● Create groups, that have a role(s) on a project or domain.
● Can be done via CLI for convenience.

Keystone groups
have a globally

unique id

Keystone groups
have a globally

unique id

Associate groups
with a role on a

project.

● (Roles and projects
listed on left side)

Associate groups
with a role on a

project.

● (Roles and projects
listed on left side)

Keystone Group IDs:

● regular_employees_canada
● (af27ba … 15f4dc)

● swg_canada
● (8ca506 … ad0214)

SAML Assertions

● An assertion from a valid Identity Provider, is an indication that the user has been
authenticated.

● A snippet from a SAML assertion is seen below, containing user and group information
(from an IdP perspective).

● The 'idp_group' in the SAML attributes are the IdPs method of assigning groups, these

need to be mapped back to the groups that were created in the previous step.

<saml:AttributeStatement>
 <saml:Attribute Name="subject">
 <saml:AttributeValue xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="xs:string"
 >stevemar</saml:AttributeValue>
 </saml:Attribute>
 <saml:Attribute Name="idp_group">
 <saml:AttributeValue xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="xs:string"
 >IBM Regular Employees Canada</saml:AttributeValue>
 </saml:Attribute>
 <saml:Attribute Name="idp_group">
 <saml:AttributeValue xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="xs:string"
 >SWG Canada</saml:AttributeValue>
 </saml:Attribute>
 </saml:AttributeStatement>

IdP Group attributes:

● IBM Regular Employees Canada
● SWG Canada

Keystone Group IDs:

● regular_employees_canada
● (af27ba … 15f4dc)

● swg_canada
● (8ca506 … ad0214)

Adding the Mapping

● Create a mapping to map the IdP attributes to Keystone attributes.
● Example request body sent to OS-FEDERATION/mappings/BP_MAP

{
 "mapping": {
 "rules": [
 {
 "local": [
 {
 "group": {
 "id": "af27bac827014e67888a40c53015f4dc"
 }
 }
],
 "remote": [
 {
 "type": "idp_group",
 "any_one_of": [
 "IBM Regular Employees Canada"
]
 }
]
 }
]
 }
}

"rules": [
{
 "local": [{
 "user": {
 "name": "{0}"
 }}],
 "remote": [{
 "type": "subject"
 }]
},
{
 "local": [{
 "group": {
 "id": "8ca506c53607452cb22b7e8914ad0214"

 }}],
 "remote": [{
 "type": "idp_group",
 "any_one_of": [
 "SWG Canada"
]}]
 }
]

In this case 'IBM Regular
Employees Canada' maps to

ID 'af27ba … 15f4dc'

In this case 'IBM Regular
Employees Canada' maps to

ID 'af27ba … 15f4dc'

A mapping can have
many rules!

A mapping can have
many rules!

Keystone Group IDs:

● regular_employees_canada
● (af27ba … 15f4dc)

● swg_canada
● (8ca506 … ad0214)

IdP Group attributes:

● IBM Regular Employees Canada

● SWG Canada

Mapped!

Getting In!

● Setting the scene:
● The user is already authenticated through their own Identity Provider.
● Keystone is acting as a proxy, for them to have access to the cloud.
● In classic Keystone authentication, scope is defined as a project or domain the user wishes to access.

● That doesn't change with federation.

● Identifying the problem:
● The federated user doesn't know anything about the resources (projects/domains) available.

● Finding a solution:
● Create new APIs to allow a look-up
● How to get in.

● Initially retrieve an unscoped token.
● Look up which resources (projects/domains) are available.
● Retrieve a scoped token.

● Success!

Getting In! - Part 1

Response Header: `X-Auth-Token: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY`

● Response Body:
{
 "token": {
 "methods": [
 "saml2"
],
 "user": {
 "id": "stevemar",
 "name": "stevemar",
 "OS-FEDERATION": {
 "identity_provider": "BP",
 "protocol": "SAML",
 "groups": [
 {"id": "af27ba … 15f4dc"},
 {"id": "8ca506 … ad0214"}
]
 }
 }
 }
}

Request an unscoped token:
● /OS-FEDERATION/identity_providers/{idp_id}/protocols/{protocol}/auth

● Initiate the SAML handshake.
● A protected URL, as such a request made to the URL would be redirected to the Identity Provider, to start

the SAML authentication procedure.
● Really controlled by Apache through mod_shib, for now.

● The returned token would look like a normal unscoped Keystone token, but with extra Federation content.

Data from mapping outputData from mapping output

Data about the IdP and protocol.Data about the IdP and protocol.

Data from mapping outputData from mapping output

Standard Keystone token ID (PKI, UUID …)Standard Keystone token ID (PKI, UUID …)

Getting In! - Part 2

By using group memberships, a federated user can have access to a resource (project or
domain).

Use the unscoped token returned from the previous step and call either:

List projects a federated user can access:
● GET /OS-FEDERATION/projects

OR
List domains a federated user can access:

● GET /OS-FEDERATION/domains

Output will be in the same format as GET /v3/projects or GET /v3/domains

Getting In! - Part 3

Request Body:

{
 "auth": {
 "identity": {
 "methods": [
 "saml2"
],
 "saml2": {
 "id":
"wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY"
 }
 }
 },
 "scope": {
 "project": {
 "id": "263fd9"
 }
 }
}

● Request a scoped token: /auth/tokens
● Once a federated user knows the project or domain id, a request can be made to retrieve a token that has

access to that specific project or domain.
● The returned token should look like a regular Keystone token!

Unscoped Token ID
taken from Step 1

Unscoped Token ID
taken from Step 1

Response Body:

{
 "token": {
 "methods": ["saml2"],
 "roles": [
 { "id": "050d34ad50b143d5a376f96b01ac2d19",
 "name": "Member" },
 { "id": "ca7237dafee14673a6229b1d95a56e8d",
 "name": "service" }
],
 "expires_at": "2014-03-28T03:07:42.027427Z",
 "project": {
 "domain": {
 "id": "default",
 "name": "Default"
 },
 "id": "b9b23d0b341e4338a4d76ad09c1b2dd8",
 "name": "service"
 },
 "user": {
 "id": "joeuser%40ca.ibm.com",
 "name": "joeuser@ca.ibm.com"
 },
 "issued_at": "2014-03-28T02:07:42.027492Z"
 }
}

Our roles on the project,
inherited from groups

Our roles on the project,
inherited from groups

Taken from Step 2Taken from Step 2

SUCCESS!!!!SUCCESS!!!!

Federation Design Sessions

Additional design sessions related to Federation:

● Federation – TODAY! - 1:30 pm – 2:10 pm - B306
● Locally managed identities – TODAY! • 2:20 pm – 3:00 pm - B306
● User & Group IDs – TOMORROW! • 11:40 am – 12:20 pm - B306

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

