
Swifta
A performant Hadoop
file system driver for Swift

Mengmeng Liu Andy Robb Ray Zhang

9 May 2017

2

Our Big Data Journey

• One of two teams that run multi-tenant Hadoop ecosystem at Walmart

• Large, shared clusters since 2012

• Project to enable single-tenant YARN/Spark/Presto via OpenStack and
OneOps
– Predictable job performance
– Software version flexibility
– Use case flexibility (e.g. streaming)
– Independent expansion for compute vs storage
– Maintenance for persistent vs hyper-automated/virtualized
– Maintain "user environment"

• (Different team) started building on-prem OpenStack/Ceph in 2016

Swifta: Performant Hadoop file system driver for Swift

3

Anticipated Audience (very low-level details ahead)

• Contributors and operators of Swift, Ceph, and OpenStack

• Operators of Hadoop-ecosystem* software that uses the Swift API

• Community members from the Hadoop-ecosystem*
– In particular file system folks

• Potential operators and highly technical users of any of the above

* Any software that can use the Hadoop FileSystem API

Swifta: Performant Hadoop file system driver for Swift

4

Hadoop + Swift 101

• How does Hadoop interact with
Swift?
– Hadoop "SwiftFS" implements

Hadoop FileSystem interface
on top of OpenStack Swift
REST API

• Content courtesy Comcast at
OpenStack Tokyo 2015
https://youtu.be/fu7nmIPsYOo?t=
22m17s

Swifta: Performant Hadoop file system driver for Swift

VM

Hadoop-
SwiftFS

Network

OpenStack Swift

VM

Hadoop-
SwiftFS

VM

Hadoop-
SwiftFS

5

Prior and Related Work

• Sahara-extra Hadoop file system implementation for Swift
– https://github.com/openstack/sahara-extra

• Hadoop OpenStack (RackSpace, Hortonworks, Mirantis)
– May be a fork of Sahara-extra implementation?
– https://issues.apache.org/jira/browse/HADOOP-8545
– https://github.com/apache/hadoop/tree/trunk/hadoop-tools/hadoop-

openstack

• Comcast
– Contributions to Sahara-extra implementation
– https://youtu.be/fu7nmIPsYOo?t=14m33s

Swifta: Performant Hadoop file system driver for Swift

6

General Architecture

Swifta: Performant Hadoop file system driver for Swift

Ceph Cluster

Presto Clusters

Shared Metastore
Dataset A

Ceph Cluster

Dataset B

Spark Clusters
YARN Clusters

Object API Object API

7

Extended Architecture

Swifta: Performant Hadoop file system driver for Swift

Ceph Cluster Ceph Cluster

"Classic"
Persistent
Clusters

App
App

Dataset A Dataset B

Object API Object API

File system-
level access

8

Object Storage APIs in Ceph: Swift and S3

• S3 has broad client-side support

• S3 clients aren't always aware of non-canonical implementations

• General concern around a "closed" standard

• Swift client-side support isn't universal

• Swift support won't get better without adoption

• In theory, performance tweaks can happen faster/better with Swift

Swifta: Performant Hadoop file system driver for Swift

9

Limitations of Sahara-extra driver (patched icehouse branch)

• ORC "range seeks" fail causing job failures

• Uncontrolled number of HTTP connections
– Jobs effectively DDoS RGWs

• Slow delete/rename/copy operations with high object count

• Large object lists truncate at 10,000 objects

• Re-auth deadlock kills queries from long-running processes (Presto)

• Large object support (>5GB) didn't work for us

Swifta: Performant Hadoop file system driver for Swift

10

Why Swifta

• Spent several months patching existing codebase

• Evolved from experiment evaluating a partial rewrite of Sahara-extra

• To more quickly add performance features to our experimental build

• Name intended to mark our build as an alternate implementation of the
Swift driver, avoid confusion with the Sahara-extra reference
implementation

Swifta: Performant Hadoop file system driver for Swift

11

Features of Swifta

• Bounded thread pools for list, copy, delete, and rename

• Multiple write policies adjust local storage and upload behavior

• Re-designed range seek support
– Supports ORC behavior in Hive 2.1+

• Pagination for large object lists minimizing memory footprint

• LRU cache to minimize number of header calls

• Lazy seek optimizes when HTTP requests are made
– Supports stream behaviors (e.g., in Presto)

• Along with Ceph RGW patch, resolve Large Object performance penalty

Swifta: Performant Hadoop file system driver for Swift

12

Dynamic Large Object Support and Associated Challenges

• Couldn't get client-side to split large objects (we were using an old
code base)
– Built upon the existing primitives in Sahara-extra

• Severe performance penalty in a common "pseudo-directory" case
– Can't identify which subdirectories are actually DLOs
– Patch in Ceph shows dramatic improvement

Swifta: Performant Hadoop file system driver for Swift

13

Asterisk *

• We have not tested against a Swift "proper" cluster!

• The Swift bulk LIST API does not natively provide an efficient mechanism to flag and
provide the size of large objects, unlike S3

– Large objects appear as directories to a user when listing the parent directory
– Does not affect STAT call against large object itself

• Severe performance penalty in order to present "correct" hadoop fs -ls results to user
– We don't currently do this in our "main" Swifta code
– Causes some Hibench jobs to fail, causes issues with user scripts

• We addressed this with a "hack" of Ceph's Swift implementation, and some client-side
code

• Patch to Ceph Swift API server-side implementation holds arbitrary user-provided data
– https://github.com/ceph/ceph/pull/14592

• Using that field to populate flag for/total size of large objects

Swifta: Performant Hadoop file system driver for Swift

14

Featured Performance Results

• Bounded thread pools
– Parallelism where it did not exist or limited *
– File system operations (delete, rename)

• Write policies
– File system operations (upload)
– HiBench WordCount (MR jobs)

* Direct comparisons of Swifta against patched Sahara-extra driver,
icehouse branch

Swifta: Performant Hadoop file system driver for Swift

15

Description of Evaluation Parameters

• OpenStack VMs
– 16 vCPU
– 52GB memory
– 500GB SSD local volume

• HDD storage clusters
– Ceph version 10.2.5-28redhat1xenial
– LVM cache using NVMe and HDD based OSD
– File based journal
– Erasure coding, k=8 m=3 for 1.375x overhead
– 25Gbps NICs, 1x "public", 1x "private"

• Important shared parameters
– merge/split thresholds: 48/16

Swifta: Performant Hadoop file system driver for Swift

16

Bounded Thread Pool: Delete

• hadoop fs -rm on a single
SSD node

• Thread pools of swifta
provides improvement

• Higher thread counts
caused Ceph RGW
response time to
increase

Swifta: Performant Hadoop file system driver for Swift

17

Bounded Thread Pool: Rename

• hadoop fs -mv on a
single SSD node

• Thread pools of swifta
reduces execution time
of rename operations
(copy and delete) to
trivial levels

Swifta: Performant Hadoop file system driver for Swift

18

Swifta Write Policies

Swifta: Performant Hadoop file system driver for Swift

VM
JVM

Swift Object Store

Local Storage

VM
JVM

Local Storage

2 GB

Swift Object Store Swift Object Store

VM
JVM

Local Storage

2 GB

2 GB

Policy: Multipart Single Thread Policy: Multipart no Split Policy: Multipart with Split

Local Storage split size * 1
For default split size (256MB), max disk
use of 256MB

Entire file saved to local storage split size * threads

Upload Threads Single thread uploading one pre-split
object

Many threads uploading objects via
local byte ranges in parallel

Many threads uploading pre-split
objects asynchronously from local writes

2 GB

19

Write Policy: Performance Comparison of Uploading a Single 100GB File

• hadoop fs -put on a
single SSD node

• While "Single-Thread-
One-Split" is slowest, it
requires the least local
storage

• "No-Split-Whole-File"
policy requires 100GB
local storage for this test

• All three policies used 20
threads in swifta thread
parameters other than
the uploading thread

Swifta: Performant Hadoop file system driver for Swift

20

Write Policy: Performance Comparisons on HiBench WordCount

• HiBench 6.0 released
version, a MR job of
WordCount prepare.sh

• Three "scale-# of
mappers-# of reducers":
Huge-4-4, Gigantic-12-
12, and Bigdata-60-60,
4GB memory per
mapper/reducer, 10
compute SSD nodes

• Default settings of Swifta
thread parameters

Swifta: Performant Hadoop file system driver for Swift

21

Lazy Seek

• Seek only when necessary to read data

• Reduce connection overheads to input streams (e.g.,
huge improvements in Presto queries)

• A feature implemented similar to
S3A: https://issues.apache.org/jira/browse/HADOOP-12444

Swifta: Performant Hadoop file system driver for Swift

22

Future Work

• Open source after internal workload validation

• Local tiered storage for buffering

• Multiple read policies to improve read performance

• Abstract calls to support both Swift and S3 protocol

Swifta: Performant Hadoop file system driver for Swift

23

Take-away

• Swifta scales the Swift API for large Hadoop-ecosystem workloads

• Prefer to merge our work upstream

• Welcome help to merge, or just make current code better

• Still work to be done in the Swift community, and we would love to
help (large object support, in particular)

Swifta: Performant Hadoop file system driver for Swift

Q&A
Mengmeng Liu (mengmeng.liu@walmartlabs.com)

Andy Robb (arobb@walmartlabs.com)

Ray Zhang (LZhang@walmartlabs.com)

Swifta

