

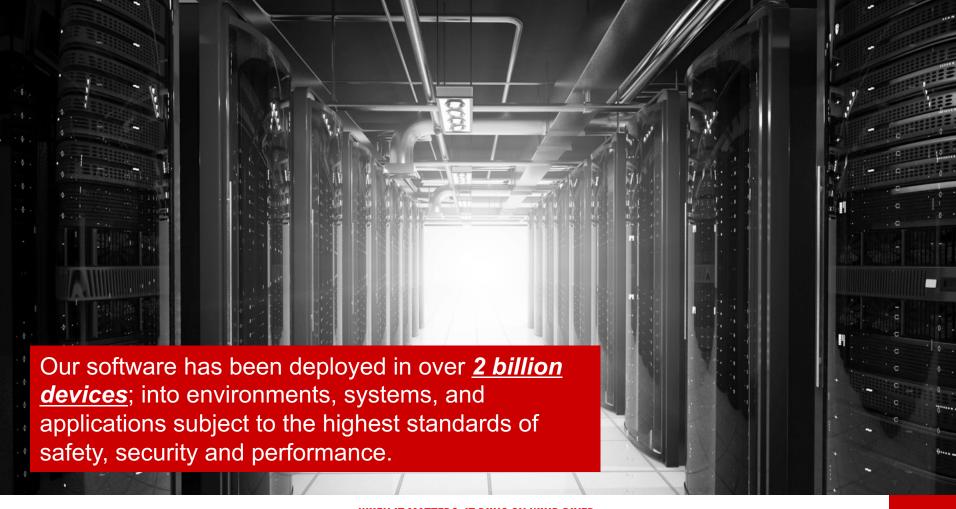
Edge Computing Operations: *Day-1 Deployment & Day-2 Management*

Titanium Cloud

Brent Rowsell & Greg Waines (Wind River Systems)

Who we are

Brent Rowsell


- Principal Architect of Titanium Cloud,
- Wind River's Lead Project Member in StarlingX,
- Working with OpenStack since 2013,
- 25+ years of Telecom Experience.

Greg Waines

- Senior Architect of Titanium Cloud,
- Member of StarlingX Project,
- Contributing to OpenStack Vitrage and OpenStack Masakari,
- Working with OpenStack since 2013,
- 25+ years of Telecom Experience.

Wind River® Titanium Cloud Addresses Key Challenges

Telco Infrastructure

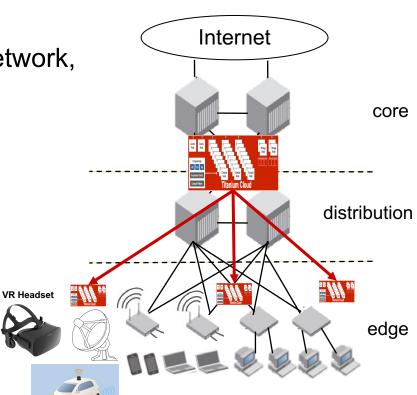
- Proven, integrated virtualization platform saves Time-To-Market
- Delivers latency, resiliency and performance for Edge use cases
- Streamlined installation, commissioning and maintenance
- End-to-End security and ultra-low latency for Edge applications
- Full support for multi-layer HW and SW decoupling

Energy

Smart Buildings

Manufacturing

Introducing StarlingX


- StarlingX is a new project being hosted by the OpenStack Foundation
- Formed with seed code from the Wind River Titanium Cloud portfolio
- Project will provide a fully integrated openstack platform with differentiators for high availability, Quality of Service, performance and low latency needed for industrial and telco use cases
- Aligned with the OpenStack Foundation Edge Working Group and the Linux Foundation Akraino Edge Stack

Edge Computing

 Extending the cloud to the edge of the network, near the source of data,

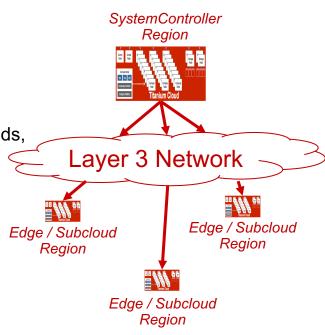
- Reducing the <u>latency</u> between 'cloud services' and 'end-user devices',
 - Cloud Computing,
 - Cloud Storage,
 - Cloud Networking.

→ Enabling new genres of applications.

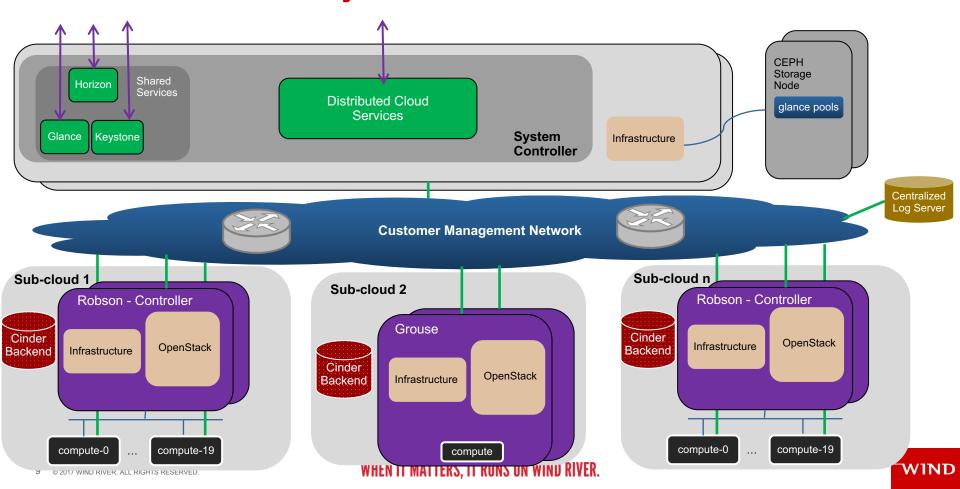
Titanium Cloud – Distributed Cloud Project Part of **StarlingX** Project

Objectives:

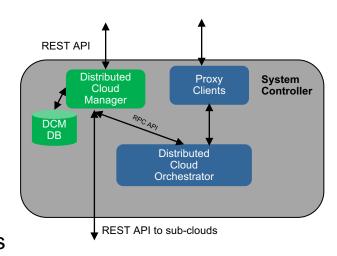
- **Centralized Management** across all Edge Subcloud Deployments
- Zero Touch Provisioning
 - Day-1 Edge Subcloud Installation and Commissioning Simplicity


Day-2 Centralized Management of System-Wide Configuration across all Edge Subclouds

- Scale to Large Number of Edge Subclouds,
- Scale Edge Subclouds both Small (i.e. Single Server) and Large (i.e. 100s of Servers),
- Maximize Edge Subcloud autonomy when communication to central control is lost.


Distributed Cloud - Solution Overview

- Based on OpenStack Regions,
- Central <u>SystemController Region</u>:
 - Hosting Shared Services and
 - System-wide Infrastructure Orchestration functions:
 - Deployment and Management of Subclouds,
 - Configuration portal for shared configuration across all Subclouds,
 - Fault aggregation,
 - Patching orchestration.
- Remote <u>Edge / Subcloud Regions:</u>
 - Geographically dispersed,
 - Connected via L3 network,
 - Running reduced Control Plane.
- Inter-Region Communications strictly REST APIs / L3.



Distributed Cloud Project - Architecture

Distributed Cloud - Manager

- CLI/REST API to add/delete/modify/query Subclouds
- Manages Subcloud configuration and status
 - Configuration: name, management subnet, etc.
 - Status: availability, sync status, etc.
- Provides administrative commands to manage/unmanage Subcloud
- Manages alarms for Subcloud availability
- Audits Subclouds to determine overall availability status
- REST API for system wide patch orchestration

Shared OpenStack Services

Keystone

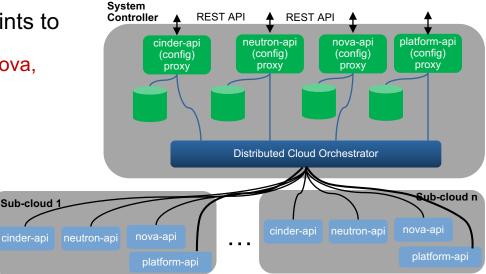
- Centralized Project and User Management,
- Future Blueprints:
 - Distributed across all Subclouds.
 - Centralized configuration portal and synchronization across all Subclouds.

Glance

- Centralized image management,
- Partially distributed solution; images are cached in Subclouds, reducing latency impact.
- Future Blueprints:
 - Distributed across all Subclouds,
 - Centralized configuration portal and synchronization across all Subclouds.

Horizon

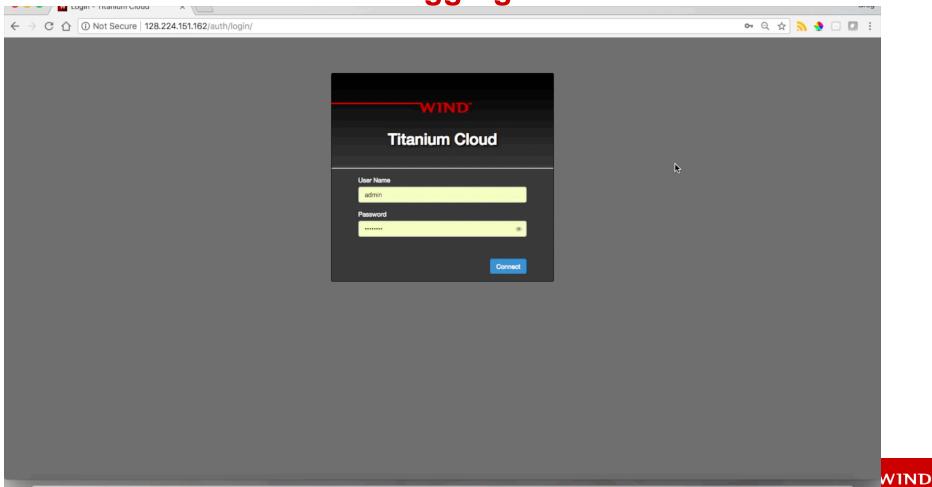
Single Central Horizon instance which can switch between Subcloud contexts.



Distributed Cloud – Orchestrator: Synch Shared Config

- SystemController exposes external endpoints to provision
 - synchronized OpenStack configuration for Nova, Neutron and Cinder,
 - Synchronized Infrastructure configuration.
- Configuration updates made on the SystemController are applied to all Edge / Subclouds,
- As part of Edge / Subcloud Installation, synchronized OpenStack configuration is automatically applied.

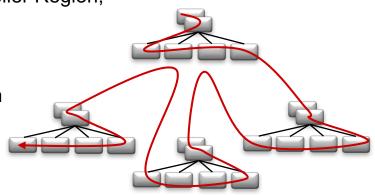
Openstack Resources Synchronized:


- Nova: flavors, flavor extra-specs, keypairs, quotas
- Neutron: security groups, security group rules
- Cinder: quotas

<u>Infrastructure</u> Resources Synchronized:

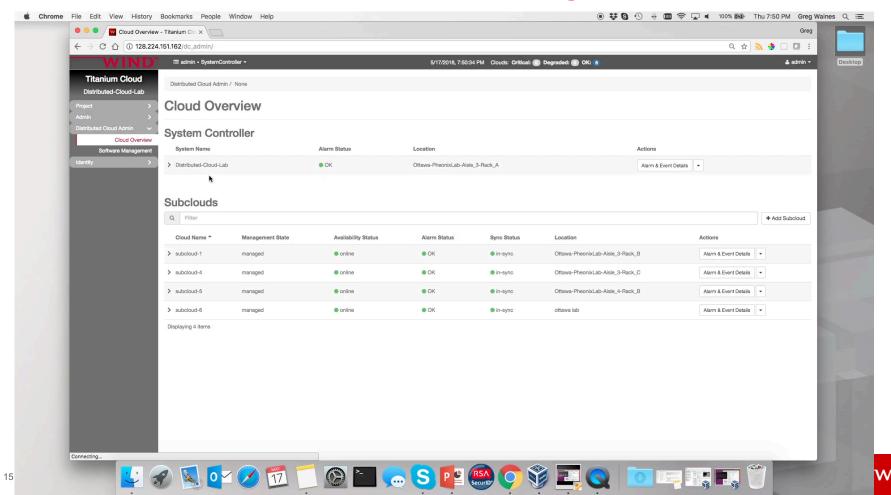
- DNS IP addresses
- NTP IP addresses
- OAM Firewall settings
- SNMP community and trapdest settings
- Remote logging settings

Distributed Cloud - Alarm Aggregation & Subcloud Status

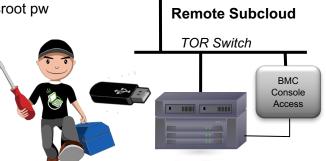


Distributed Cloud - Software Patching Orchestration

- Patch == Software Update containing Bug Fixes and/or New Features.
- Orchestrate the application of software patches <u>across entire distributed cloud</u>.
- Applies Patch to SystemController Region first
 - Automatically iterating through all nodes of SystemController Region,


... and installs patch(es).

- Automatically recursively iterating
 - Through all Edge / Subcloud Regions,
 - And through all nodes in each Edge / Subcloud Region and installs patch(es).
- Automatically migrates VMs throughout procedure.
- A <u>MUST</u> for Edge Computing Systems
 - Improvement in usability of applying patches
 - Improvement in time to apply patches

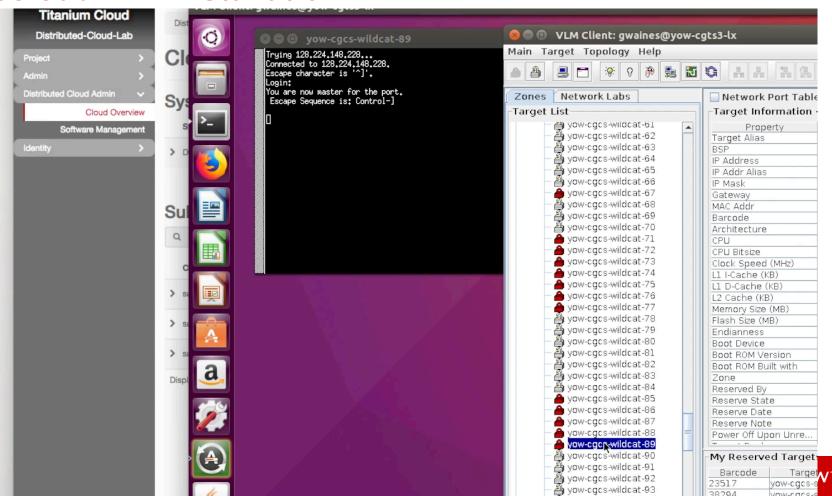

Distributed Cloud - Software Patching Orchestration

Subcloud ZTP Installation

At remote site

- 1. Server(s) are physically installed
 - TOR cabling, config and verification
 - BMC cabling, config and verification
- 2. Power up first controller
- 3. Load is installed on the first controller
 - Installation options:
 - USB stick
 - Pxeboot server on customer network
 - Staged prior to delivery to remote site
 - Login and set initial wrsroot pw

Remotely


- Via remote BMC console, run pre-bootstrap utility
 - Sets up basic network connectivity
- 2. Add & Configure Subcloud via GUI,
- 3. Generate 'bootstrap configuration file', Transfer to the Subcloud,
- 4. Run 'config_subcloud' bootstrap wizard,
- Select 'Manage Subcloud' to synchronize shared data to Subcloud.
 - → Subcloud is ready for workloads.

L3 Network

SystemController

Subcloud ZTP Installation

Summary and Next Steps

- Synchronization of OpenStack & Platform configuration & quotas across Subclouds.
- Fully Automated Orchestration of Patches across Subclouds,
- Aggregation of Alarms across all Subclouds,
- ZTP Installation of Subclouds.

Future Blueprints:

- Distributed Keystone for scalability and Subcloud autonomy,
- Securing Inter-Region Communications,
- Fully Distributed and Synchronized Glance,
- Synchronization of Configuration to 'selected' Subclouds,
- Inter-Subcloud VNF Lifecycle Management,
- Geo-Redundant SystemController,
- Upgrade Orchestration.

