
Using Prometheus Operator to monitor
OpenStack
Monitoring at Scale

Pradeep Kilambi & Franck Baudin / Anandeep Pannu
Engineering Mgr NFV Senior Principal Product Manager

 15 November 2018

2

● Requirements
○ Why current OpenStack Telemetry is not adequate
○ Why Service Assurance Framework

● The solution approach
○ Platform solution approach
○ Multiple levels of API

● Detailed architecture
○ Overall architecture
○ Prometheus Operator
○ AMQ
○ Collectd plugins

● Configuration, Deployment & Perf results for scale
● Roadmap with future solutions

What we will be covering

Issues & Requirements

3

4

1. Address both telco (fault detection within few 100 ms) and enterprise
requirements for monitoring

2. Handle sub-second monitoring of large scale clouds
3. Have well defined API access at multiple levels based on customer

requirements
4. Time series database for storage of metrics/events should

a. Handle the scale
i. Every few hundred milliseconds, hundreds of metrics,

hundreds of nodes, scores of clouds
b. Be expandable to multi-cloud

Requirements for monitoring at scale

5

Monitoring / Telemetry - current stack

6

1. Current OpenStack telemetry & metrics/events mechanisms most
suited for chargeback applications

2. A typical monitoring interval for Ceilometer/Panko/Aodh/Gnocchi
combination is 10 minutes

3. Customers were asking for sub-second monitoring interval
a. Implementing with current telemetry/monitoring stack resulted

in “cloud down” situations
b. Bottlenecks were

i. Transport mechanism (http) to Gnocchi
ii. Load on controllers by Ceilometer polling RabbitMQ

Monitoring at scale issues - Ceilometer

7

Monitoring / Telemetry - collectd

8

1. Red Hat OpenStack Platform included collectd for performance monitoring using
collectd plug-ins

a. Collectd is deployed with RHEL on all nodes during a RHOSP deployment
b. Collectd information can be

i. Accessed via HTTP
ii. Stored in Gnocchi

2. Similar issues as Ceilometer with monitoring at scale
a. Bottlenecks were

i. Transport mechanism (http)
1. To consumers
2. To Gnocchi

b. Lack of a “server side” shipping with RHOSP

Monitoring at scale issues - collectd

9

1. Ceilometer
a. Ceilometer API doesn’t exist anymore
b. Separate Panko event API is being deprecated
c. Infrastructure monitoring is minimal

i. Ceilometer Compute provides limited Nova information
2. Collectd

a. Access through http and/ or Gnocchi needs to be implemented
by customer - no “server side”

Platform & access issues

Platform Solution Approach

10

11

Platform Approach to at scale monitoring

11

Problem:

Current Openstack telemetry and metrics do not scale for large
enterprises & to monitor the health of NFVi for telcos

Solution:

➢ Near real time Event and Performance monitoring at scale

Out of scope
➢ Mgmt application (Fault/Perf Mmgt) - Remediation - Root cause,

Service Impact...

Any Source of Events / Telemetry

Collection Layer

Distribution Layer

Mgmt/DB Layer Prometheus
operator

12

Platform Approach to at scale monitoring

12

1. APIs for 3 levels
○ At “sensor” (collectd agent) level

■ Provide plug-ins (Kafka, AMQP1) to allow connect to collectd via
message bus of choice

○ At message bus level
■ Integrated, highly available AMQ Interconnect message bus with

collectd
■ Message bus client for multiple languages

○ Time series database / management cluster level
■ Prometheus Operator

2. CEILOMETER & GNOCCHI will continue to be used for chargeback and
tenant metering

Service Assurance Framework
Architecture

14

Based on the following elements

1. Collectd plug-ins for infrastructure & OpenStack
services monitoring

2. AMQ Interconnect direct routing (QDR) message bus
3. Prometheus Operator database/management cluster
4. Ceilometer / Gnocchi for tenant/chargeback metering

Architecture for infrastructure metrics & events

15

Architecture for infrastructure metrics & events

Dispatch Routing Message Distribution Bus (AMQP 1.0)

ke
rn

el
netcpu mem

hardware

syslog /proc pid

V
M

V
M

V
M

Metrics
Events

Application Components
(VM, Container);

Controller, Compute, Ceph, RHEV, OpenShift
Nodes (All Infrastructure Nodes)

3rd Party
IntegrationsPrometheus Operator

MGMT
Cluster APIs

Prometheus-based K8S
Monitoring

16

● Collectd container -- Host / VM metrics collection framework
○ Collectd 5.8 with additional OPNFV Barometer specific plugins

not yet in collectd project
● Intel RDT, Intel PMU, IPMI
● AMQP1.0 client plugin
● Procevent -- Process state changes
● Sysevent -- Match syslog for critical errors
● Connectivity -- Fast detection of interface link status

changes
○ Integrated as part of TripleO (OSP Director)

Architecture for infrastructure metrics & events
Collectd Integration

17

Pre-configured plug-ins:

1. Apache
2. Ceph
3. Cpu
4. Df (disk file system info)
5. Disk (disk statistics)
6. Memory
7. Load
8. Interface
9. Processes

10. TCPConns
11. Virt

RHOSP 13 Collectd plug-ins
 NFV specific plug-ins

1. OVS-events
2. OVS-stats
3. Hugepages
4. Ping
5. Connectivity
6. Procevent

18

Architecture for infrastructure metrics & events
AMQ 7 Interconnect - Native AMQP 1.0 Message Router

● Large Scale Message Networks
○ Offers shortest path (least cost) message routing
○ Used without broker
○ High Availability through redundant path topology and

re-route (not clustering)
○ Automatic recovery from network partitioning failures
○ Reliable delivery without requiring storage

● QDR Router Functionality
○ Apache Qpid Dispatch Router QDR
○ Dynamically learn addresses of messaging endpoints
○ Stateless - no message queuing, end-to-end transfer

Server
A

Server
BClient

Client

Client

Server
C

High Throughput, Low Latency
Low Operational Costs

19

● Open Source Monitoring
● Only Metrics, Not Logging
● Pull based approach
● Multidimensional data model
● Time series database
● Evaluates rules for alerting and triggers alerts
● Flexible, Robust query language - PromQL

Prometheus

Target /Metrics

Target /Metrics
Prometheus Server

PromQL
HTTP

HTTP

Visualize

20

● Automated Software Management
● purpose-built to run a Kubernetes application,

with operational knowledge baked in

● Manage Installation & lifecycle of Kubernetes

applications

● Extends native kubernetes configuration hooks
● Custom Resource definitions

What is Operator?

21

● Prometheus operational knowledge in software
● Easy deployment & maintenance of prometheus
● Abstracts out complex configuration paradigms
● Kubernetes native configuration
● Preserves the configurability

Architecture for infrastructure metrics & events

Prometheus Operator

22

● ElasticSearch
○ System events and logs are stored in ElasticSearch as part of an ELK stack running

in the same cluster as the Prometheus Operator
○ Events are stored in ElasticSearch and can be forwarded to Prometheus Alert

Manager
○ Alerts that are generated from Prometheus Alert rule processing can be sent from

Prometheus Alert Manager to the QDR bus
● Smart Gateway -- AMQP / Prometheus bridge

○ Receives metrics from AMQP bus, converts collectd format to Prometheus, coallates
data from plugins and nodes, and presents the data to Prometheus through an HTTP
server

○ Relay alarms from Prometheus to AMQP bus
● Grafana

○ Prometheus data source to visualize data

Other Components

Architecture for infrastructure metrics & events
Prometheus Operator & AMQ QDR clustered

Events

Metrics

ES Client

Prom AM Client

HTTP

Event
Listener

QDR: Alert Publisher

Metric Exporter

Metric Listener

Cache

Smart Gateway

Smart Gateway

job

job

job rule

rule

rule

Alert manager

Alert manager

job

job

job rule

rule

rule

ES Client

Prom AM Client

HTTP

Event
Listener

QDR: Alert Publisher

Metric Exporter

Metric Listener

Cache

QDR A

QDR B

/collectd/telemetry

/collectd/telemetry

/collectd/notify

/collectd/notify

24

● Runs Prometheus Operator on top of Kubernetes
● A collection of Kubernetes manifests and Prometheus rules

combined to provide single-command deployments
● Introduces resources such as Prometheus, Alert Manager,

ServiceMonitor
● Elasticsearch for storing Events
● Grafana dashboards for visualization
● Self-monitoring cluster

Prometheus Management Cluster

https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/
http://grafana.com/

25

Node-Level Monitoring (Compute)

rules / action
engine

policies /
topology

Ingress Plugins

AMQP1.0

Local Agent

Procevent

kernel

RDT

network

cpu

libVirt

MCE

C
ol

le
ct

d
C

or
e

Egress Plugins

kernel

net

cpu
mem

ha
rd

w
ar

e

syslog

/proc

pid

Connect

Events
Metrics

Metrics and Events

collectd config

Policy,
topology,

events

Local corrective actions

Control and Management
uServices

 R
TM

D

Service

Local Agent

Service

Service

Service

Node Services
(ea. Managed Node)

Metrics

Events

Shared Services
(ea. Managed Domain)

Grafana

(MANO interfaces)

Visualization

API Integration

Configuration & Deployment

26

27

● Collectd and QDR profiles are integrated as part of the TripleO
● Collectd and QDRs run as containers on the openstack nodes
● Configured via heat environment file
● Each node will have a qpid dispatch router running with collectd

agent
● Collectd is configured to talk to qpid dispatch router and send

metrics and events
● Relevant collectd plugins can be configured via the heat template

file

TripleO Integration Of client side components

28

This environment template to enable Service Assurance Client side bits

resource_registry:

 OS::TripleO::Services::MetricsQdr: ../docker/services/metrics/qdr.yaml

 OS::TripleO::Services::Collectd: ../docker/services/metrics/collectd.yaml

parameter_defaults:

 CollectdConnectionType: amqp1

 CollectdAmqpInstances:

 notify:

 notify: true

 format: JSON

 presettle: true

 telemetry:

 format: JSON

 presettle: false

TripleO Client side Configuration
environments/metrics-collectd-qdr.yaml

https://github.com/openstack/tripleo-heat-templates/blob/master/environments/metrics-collectd-qdr.yaml

29

cat > params.yaml <<EOF

parameter_defaults:

 MetricsQdrConnectors:

 - host: 192.168.24.11

 port: 20001

 role: inter-router

 - host: 192.168.24.22

 port: 20001

 role: inter-router

EOF

TripleO Client side Configuration
params.yaml

30

cd ~/tripleo-heat-templates

git checkout master

cd ~

cp overcloud-deploy.sh overcloud-deploy-overcloud.sh

sed -i 's/usr\/share\/openstack-/home\/stack\//g' overcloud-deploy-overcloud.sh

./overcloud-deploy-overcloud.sh -e

/usr/share/openstack-tripleo-heat-templates/environments/metrics-collectd-qdr.yaml -e

/home/stack/params.yaml

Client side Deployment
Using overcloud deploy with collectd & qdr configuration and environment templates

31

● Server side consists of OpenShift cluster running on 3 baremetal
nodes

● is deployed using TripleO (OSP Director)
● Uses ironic to provision nodes
● tripleO to bootstrap openshift-ansible and deploy OpenShift

cluster
● Prometheus Operator, grafana, elastic search, central QDR

deployed on top of OpenShift as Ansible playbook bundles(apb)
● The server side Telemetry infrastructure is independent of

OpenStack cloud

Server Side SA Deployment
Deployed using TripleO (OSP Director) & Openshift-ansible

32

$ openstack overcloud deploy --stack telemetry --templates /home/stack/tripleo-heat-templates/ -r

/home/stack/tripleo-heat-templates/my_roles.yaml -e

/home/stack/tripleo-heat-templates/environments/openshift.yaml -e

/home/stack/tripleo-heat-templates/environments/openshift-cns.yaml -e

/home/stack/tripleo-heat-templates/params.yaml -e

/home/stack/tripleo-heat-templates/environments/networks-disable.yaml -e

/home/stack/network-environment.yaml -e /home/stack/containers-prepare-parameter.yaml

Deploying Telemetry Framework
Using tripleo overcloud deploy

33

$ openstack server list
+--------------------------------------+-------------------------+--------+------------+-------------+------------------------+

| ID | Name | Status | Task State | Power State | Networks |

+--------------------------------------+-------------------------+--------+------------+-------------+------------------------+

| 91278733-73cb-44a3-8a7a-a82828414d12 | overcloud-controller-0 | ACTIVE | - | Running | ctlplane=192.168.24.13 |

| 332b5661-fe97-4ec3-8ba6-2cc2851a0039 | overcloud-controller-1 | ACTIVE | - | Running | ctlplane=192.168.24.11 |

| a9100dae-f053-4266-8a80-0b417cc0c19d | overcloud-controller-2 | ACTIVE | - | Running | ctlplane=192.168.24.22 |

| 55b1898e-381c-4037-90ee-4514bb28b277 | overcloud-novacompute-0 | ACTIVE | - | Running | ctlplane=192.168.24.17 |

| dceaa6b2-963a-40a3-9f1f-07c179864786 | telemetry-node-0 | ACTIVE | - | Running | ctlplane=192.168.24.9 |

| f67475a2-2b23-49e7-802d-1115eba39afa | telemetry-node-1 | ACTIVE | - | Running | ctlplane=192.168.24.30 |

| e0765d77-27fa-4bb2-92ff-d707aa7b19a2 | telemetry-node-2 | ACTIVE | - | Running | ctlplane=192.168.24.16 |

+--------------------------------------+-------------------------+--------+------------+-------------+------------------------+

Post deployment Overview

34

Service Assurance Cluster

QDR

Ceph ControllersComputeCompute

Prometheus
Operator++ Cluster

QDR

QDR

S
G

S
G

Prometheus

Alarm
Manager

Alarm
Manager

Prometheus

Events
Metrics

QDR

Grafana

QPID Dispatch Router

3rd Party
Integrations

1. AMQP1 collectd plug-in
○ Proton (“send” side) client for AMQ integrated

2. Proton send/receive client for connecting to AMQ for consumers
3. Collectd plug-ins from Barometer project integrated
4. Separate management cluster running on OpenShift

○ At least two to three servers (for HA)
○ Each server has one QDR (Qpid Dispatch Router)
○ Prometheus Operator which consists of

i. Prometheus
ii. Prometheus Config

1. Multiple Prometheus for HA (one per server)
iii. Prometheus Alert Manager (one per server)

5. Director installation & configuration of all additional OpenStack components

Deployment Summary

36

● 128G Memory
● 2.9GHz, 2 Socket, 12 physical cores, 24 hyperthreaded cores
● Drives -- sdc was used as the data drive for Prometheus

○ sda disk 447.1G SAMSUNG MZ7LM480
○ sdb disk 1.8T ST2000NX0403
○ sdc disk 1.8T ST2000NX0403
○ 7200RPM SATA3 6Gb/s 128M Internal

● 10Gbps Network interfaces

Prometheus Metrics Scale
Hardware Test Setup

37

1. Prometheus scale dependent upon
○ Number of raw metrics
○ Number of labels per timeseries
○ Number of rules applied to each timeseries

i. Data rewrite
ii. Alerting

○ Data export load
2. Determine CPU load for each host tier for data ingestion only. Adjust

GOMAXPROC
3. Add representative number of rules per timeseries
4. Target 4000 hosts with 100s of metrics each
5. Million metrics per second

Prometheus Metrics Scale
Test Methodology

38

Prometheus Metric Scale
Data Storage Only

Roadmap to the future

39

Release Cadence

* Service Assurance
Framework GA
* Prometheus Mgmt Cluster
Deployment by Director

 Central SAF &
Prometheus Mgmt
Cluster for multi-site
OSP deployment

* Service Assurance
Framework TP
* AMQ integration with
SAF
* Ansible based
Prometheus Mgmt Cluster
deployment

Queens Rocky Stein1414
14

1513
* Backport OSP 14 Tech
Preview SAF

 BEYOND14 15

41

Monitoring multiple cloud with multiple
Prometheus Instances

AMQP OS Networks

ceph
cntrl 1
cntrl 2
cntrl 3

Prometheus
Operator++ Cluster

Prometheus

Grafana

QDR QDR QDR

S
G

S
G

S
G

Central Site

Remote Site(s)

ceph
ceph

ceph

compute
compute
compute

compute

AMQP OS Networks

ceph
cntrl 1
cntrl 2
cntrl 3

ceph
ceph

ceph

compute
compute
compute

compute

AMQP OS Networks

ceph
cntrl 1
cntrl 2
cntrl 3

ceph
ceph

ceph

compute
compute
compute

compute

AMQP OS Networks

ceph
cntrl 1
cntrl 2
cntrl 3

ceph
ceph

ceph

compute
compute
compute

compute

Layer 3 Network to Remote Sites

Site 1 Site 2 Site 10

THANK YOU
plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

