
Kubernetes Administration from Zero to
(junior) Hero

László Budai – Component Soft Ltd.

2(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Agenda

1.Introduction

2.Accessing the kubernetes API

3.Kubernetes workloads

4.Accessing applications

5.Volumes and persistent storage

3(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Introduction

● Cloud computing in general
● Cloud native computing
● Kubernetes overview
● Kubernetes architecture

4(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Cloud computing in general

● a model for enabling ubiquitous network access to a
shared pool of configurable computing resources*
– resources (compute, storage, network, apps) as services

● resources are allocated on demand
– scaling and removal also happens rapidly (seconds-minutes)

● multi-tenancy
– share resources among thousands of users
– resource quotas

– cost effective IT
● Pay-As-You-Go model

– pay per hour/gigabyte instead of flat rate
● maximized effectiveness of the shared resources

– maybe over-provisioning
● lower barriers to entry (nice for startups)

– focus on your business instead of your infrastructure
*definition by NIST

5(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Cloud native computing

– a new computing paradigm that is optimized for modern
distributed systems environments capable of scaling to tens of
thousands of self healing multi-tenant nodes.

– Main properties:
● Container packaged – containers represents an isolated unit of application

deployment.

● Dynamically managed - actively scheduled and actively managed by a
central orchestrating process.

● Micro-services oriented - loosely coupled with dependencies explicitly
described (e.g. through service endpoints).

6(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Application containers

– OS level virtualization – OS partitioning (virtual OS vs virtual HW)

– Allows us to run multiple isolated user-space application
instances in parallel.

– Instances will have:
● Application code

● Required libraries

● Runtime

– Self sufficient – no external dependencies

– Portable

– Lightweight

– Immutable images Hardware

Operating system

Li
br

ar
ie

s,
bi

na
rie

s
A

pp
lic

at
io

n

Li
br

ar
ie

s,
bi

na
rie

s
A

pp
lic

at
io

n

Li
br

ar
ie

s,
bi

na
rie

s
A

pp
lic

at
io

n

7(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Container orchestration

– tools that are providing an enterprise-level framework for
integrating and managing containers at scale.

– aim to simplify container management
● a framework for defining initial container deployment
● availability
● scaling
● networking

– Docker Swarm

– Mesosphere Marathon

– Kubernetes

8(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Kubernetes

– Kubernetes – ancient Greek word for helmsman
or pilot of the ship

– Initially developed by google

– Has its origins in Borg cluster manager

– “Kubernetes is an open-source system for
automating deployment, scaling, and
management of containerized applications.”

– Places containers on nodes

– Recovers from failure

– Basic monitoring, logging, health checking

– Enables containers to find each other

https://research.google.com/pubs/pub43438.html

9(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Kubernetes concepts

– Kubernetes Master – maintains the desired state for the cluster

– Kubernetes Node – runs the applications

– Kubernetes objects - abstractions that represent the state of
the cluster.

● A “record of intent” - a desired state of the cluster
● Objects have

– Spec – describes its desired state
– State – describes the actual state; updated by Kubernetes.
– Name – client provided; unique for a kind in a namespace, can be

reused
– Namespaces – virtual clusters; provides a scope for names.
– Labels – key-value pairs attached to objects
– Label selector – is the core grouping primitive
– Annotations – attach arbitrary non-identifying metadata to

objects

10(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Kubernetes objects categories

– Workloads – used to manage and run the containers (Pod,
ReplicationController, deployment)

– Discovery & LB – "stitck" workloads together into an externally
accessible, load-balanced Service (Service, Ingress).

– Config & Storage – objects we can use to inject initialization
data into applications, and to persist data that is external to the
containers (Volume, Secret).

– Metadata – objects used to configure the behavior of other
resources within the cluster (LimitRange)

– Cluster – objects responsible for defining the configuration of
the cluster itself (Namespace, Binding)

11(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Kubernetes architecture

– Kubernetes master

– Kubernetes node

Kubernetes master

API Server

Controller
Manager

Scheduler

etcd

Kubernetes node

Kubelet Kube-Proxy

Pod Pod Pod Pod...

.

.

.

Container engine

Kubernetes node

Kubelet Kube-Proxy

Pod Pod Pod Pod...

Container engine

Users

Kubernetes node

Devops

12(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Kubernetes master

– provide the cluster’s control plane
– kube-apiserver

● Exposes the Kubernetes API – the front-end
for the Kubernetes control plane.

● Designed to scale horizontally.

– etcd
● Is the backing store of Kubernetes.
● Distributed key-value store

– Kube-controller-manager
● background threads that handle routine tasks

– Node Controller
– Replication Controller
– Endpoints Controller
– Service Account & Token Controllers

– kube-scheduler
● Assigns nodes to the newly created pods

 Kubernetes master

API Server

Controller
Manager

Scheduler

etcd

13(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Kubernetes node

– kubelet - the primary node agent. It watches for pods that have
been assigned to its node and:

● Mounts the pod’s required volumes.
● Downloads the pod’s secrets.
● Runs the pod’s containers.
● Periodically executes any requested container

liveness probes.
● Reports the status of the pod.
● Reports the status of the node.

– kube-proxy
● enables the Kubernetes service abstraction by maintaining network rules

on the host and performing connection forwarding

– Container engine
● Used to run the containers
● Docker by default, rkt optionally.
● Container Runtime Interface – paves the way to alternative runtimes

Kubernetes node

Kubelet Kube-Proxy

Pod Pod
...

Container engine

14(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Exercise 1: The lab environment

– Understanding

the classroom

environment

– Using kubectl
br_management
10.10.10.0/24Lab machine:

K
V

M
in

st
an

ce
s

master1 worker2 worker3

eth0 eth0 eth0

worker1

eth0

15(c) 2018 Component Soft Ltd. - v1.11revdraf
t

2. Accessing the kubernetes API

– Ways to access the API
– Controlling access to the API
– Authentication
– Authorization
– Role Based Access Control

16(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Accessing the kubernetes cluster

– kubectl – the command line tool for deploying and managing
applications on kubernetes

● Inspect cluster resources
● Create, delete, update components
● Configuration file: ~/.kube/config – information for finding and accessing

a cluster
● bash autocompletion

– Dashboard – web based user interface (add-on)
● Manage applications
● Manage the cluster itself

– Direct access to the API
● HTTP REST

17(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Controlling access to the API

– A request for the API will pass several stages before reaching it

Authentication Authorization
Admission

control
ResourceResource

Request

– Authentication – Ensures that the user it is who it pretends to be
– Kubernetes has 2 categories of users:

● Service accounts – managed by kubernetes
● Normal users – managed by an independent service

– API requests can be treated as anonymous ones if are not tied
to a user or service account.

– Kubernetes uses client certificates, bearer tokens, an
authenticating proxy, or HTTP basic auth to authenticate API
requests through authentication plugins.

18(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Authorization

– After the user authentication step the request will have to pass the
authorization step.

– All parts of an API request must be allowed by some policy →
permissions are denied by default.

– Authorization modules
● Node
● ABAC – Attribute-based access control
● RBAC – Role-based access control
● Webhook

19(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Role Based Access Control

– RBAC allows fine grained rules for accessing the cluster
– allows dynamic configuration of policies through the Kubernetes API.
– uses the “rbac.authorization.k8s.io” API group
– It defines Roles and RoleBindings in order to assign permissions to

subjects.
– These permissions can be set

● Clusterwide – can be used for cluster-scoped resources, non-resource
endpoints, namespaced resources across all namespaces

● Within a namespace.
● For one single resource.

– Subjects can be users, groups, and service accounts

20(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Roles and ClusterRoles

– RBAC roles contains the rules that represent the permissions
– Permissions are purely additive
– A role can be defined within a namespace, or cluster-wide

(ClusterRole)
kind: Role
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:

 namespace: default

 name: pod-reader
rules:
 - apiGroups: [""]

 resources: ["pods"]
 verbs: ["get", "watch", "list"]

– ClusterRoles are not namespaced

21(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Role bindings

– Role binding grants the permissions defined in a role to a subject.
– Permissions can be granted within a namespace with a RoleBinding,

or cluster-wide with a ClusterRoleBinding
– A RoleBinding can use a ClusterRole. The rules will apply to the

namespace of the binding.
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
 name: read-pods
 namespace: development
subjects:
 - kind: User
 name: dave
 apiGroup: rbac.authorization.k8s.io
roleRef:
 kind: ClusterRole
 name: cluster-pod-reader
 apiGroup: rbac.authorization.k8s.io

22(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Exercise 2: RBAC

– Use RBAC to control access to the API

23(c) 2018 Component Soft Ltd. - v1.11revdraf
t

3. Kubernetes workloads

– Pod
– Replication controllers
– Deployments, Replica sets
– Jobs and CronJobs
– DaemonSets

24(c) 2018 Component Soft Ltd. - v1.11revdraf
t

The pod

– Pod - the smallest deployable object in the Kubernetes object model.
– It runs a single instance of an application
– Contains

● One or more application containers
● Storage resources
● A unique IP address
● Options about how the container(s) should run.

– Containers in one pod are sharing the
network namespace and storage resources

– A pod is scheduled on a node and remains
there until terminated or evicted

– Pods do not self-heal by themselves →
controller.

Volume

Pause

 Container1

 Container2

eth0

N
et

w
or

k
N

am
es

pa
ce

Network

25(c) 2018 Component Soft Ltd. - v1.11revdraf
t

The pod (cont)

– Pod lifecycle:
● Pending – pod has been accepted by the Kubernetes system, but one or more

of the Container images has not been created.
● Running – has been bound to a node, all of the containers have been created.

At least one container is still running (or starting / restarting).
● Succeeded – all containers have terminated in success, and will not be

restarted
● Failed - All Containers have terminated; at least one has terminated in failure.
● Unknown – the state of the pod could not be obtained

– Probes – performed by the kubelet on a Container using a handler
● Probe types – what is testing: readinessProbe, livenessProbe
● Handler Types – how is testing: ExecAction, TCPSocketAction, HTTPGetAction
● Probe result: Success, Failure, Unknown

– Restart policy – restarts a pod based on the liveness test result
● restartPolicy: Always, OnFailure, Never

– Pods are restarted on the same node, only controllers can schedule
a new pod on a different node.

26(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Our first Pod

Describe the Pod using a YAML file:

apiVersion: v1

kind: Pod

metadata:

 name: busybox

spec:

 restartPolicy: OnFailure

 containers:

 ­ name: busybox

 image: busybox

 command:

 ­ sleep

 args:

 ­ "100"

27(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Operations on pods

– Create the pod using the kubectl command:
● kubectl create -f pod1.yaml

– Check the pod status
● kubectl get pod busybox [-o wide]
● kubectl get pod --watch

– Get information about the pod
● kubectl describe pod busybox
● kubectl get pod busybox -o yaml

– Check the logs of a pod
● kubectl logs busybox

– Execute a command inside the pod
● kubectl exec -ti busybox sh

– Delete the pod
● kubectl delete pod busybox

28(c) 2018 Component Soft Ltd. - v1.11revdraf
t

ReplicaSet

– The ReplicaSet controller simply
ensures that the desired number of
pods matches its label selector
exists and are operational

– If the labels of the pod are modified
and they do not match the label
selector, then a new pod is spawned,
the old one stays there.

– The ReplicaSet provide a declarative
definition of what a Pod should be
and how many of it should be running
at a time.

apiVersion: apps/v1
kind: ReplicaSet
metadata:
 name: nginx
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 name: nginx
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx

rs1.yaml

29(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Working with ReplicaSet

– Create the ReplicaSet
● kubectl create -f rs1.yaml

– Check the status
● kubectl get rs [--watch]
● kubectl describe rs nginx

– Change the number of replicas
● kubectl scale rs nginx --replicas=3

– Delete the ReplicaSet
● kubectl delete rs nginx

30(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Deployments

– A Deployment provides declarative updates for Pods and
ReplicaSets

– Deployment creates ReplicaSet, which creates the Pods
– Updating a deployment creates new ReplicaSet and updates the

revision of the deployment.
– During update pods from the initial RS are scaled down, while pods

from the new RS are scaled up.
– Rollback to an earlier revision, will update the revision of Deployment
– The --record flag of kubectl allows us to record current command in

the annotations of the resources being created or updated
– Strategy – how to replace the old pods

● Rolling update (default): maxUnavailable, maxSurge
● Recreate

31(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Working with Deployments

– Creating a deployment
● kubectl run ghost --image=ghost --record
● kubectl create -f dep1.yaml --record
● dep1.yaml:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
spec:
 replicas: 3
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx
 ports:
 - containerPort: 80

32(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Working with Deployments (cont)

– Check the status
● kubectl get deployment nginx [--watch]
● kubectl get deployment nginx -o yaml
● kubectl describe deployment nginx

– Scale a deployment
● kubectl scale deployment nginx --replicas=4

33(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Working with Deployments (cont)

– Update a deployment
● kubectl set image deployment/nginx nginx=nginx:1.7.9 --all=true
● kubectl edit deployment nginx

– Check the status of a rollout
● kubectl rollout status deployment nginx
● kubectl rollout history deployment nginx

– Undo a rollout
● kubectl rollout undo deployment/nginx [--to-revision=2]

– Pause and resume a deployment – allows multiple changes
● kubectl rollout pause deployment/nginx
● kubectl rollout resume deployment/nginx

34(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Jobs, CronJobs

– A job creates one or more pods and ensures that a specified number
of them successfully terminate.

– Jobs can be used to reliably run a Pod to completion the specified
number of times (.spec.completions)

– Jobs can run multiple Pods in parallel (.spec.parallelism)
– Pods in a Job can only use Never or OnFailure as their RestartPolicy
– It is up to the user to delete old jobs after noting their status
– Deleting a Job will delete the related Pods
– If Pods are failing, the Job will create new Pods forever. The

.spec.activeDeadlineSeconds will limit the time for which a Job will
create new Pods.

– CronJobs can create Jobs once or repeatedly at specified times
– .spec.jobTemplate will specify the Job to be created
– concurrencyPolicy: Allow, Forbid, Replace

35(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Jobs example

apiVersion: batch/v1

kind: Job
metadata:

 name: pi
spec:

 completions: 10
 parallelism: 3
 template:
 metadata:

 name: pi

 spec:
 containers:
 - name: pi
 image: perl
 command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]

 restartPolicy: Never

36(c) 2018 Component Soft Ltd. - v1.11revdraf
t

CronJobs example

apiVersion: batch/v2alpha1
kind: CronJob
metadata:
 name: cron-pi
spec:
 schedule: "*/1 * * * *"
 jobTemplate:
 spec:
 completions: 10
 parallelism: 3
 template:
 metadata:
 name: pi
 spec:
 containers:
 - name: pi
 image: perl
 command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]
 restartPolicy: Never

37(c) 2018 Component Soft Ltd. - v1.11revdraf
t

DaemonSets

– A DaemonSet ensures that all (or some) nodes run a copy of a pod
– When nodes are added to the cluster, pods are added to them
– When nodes are removed from the cluster, those pods are garbage

collected
– To run pods only on some nodes:

● .spec.template.spec.nodeSelector – pods started on nodes that match the
node selector

● .spec.template.spec.affinity – pods are created on nodes that match the node
affinity

– If node labels are changed, the DaemonSet will promptly adapt
– Deleting a DaemonSet will delete the pods (except –cascade=false)
– UpdateStrategy:

● OnDelete - new pods will only be created when the old ones are manually
deleted

● RollingUpdate - after you update a DaemonSet template, old pods will be killed

38(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Exercise 3: Kubernetes workloads

– Task 1: Working with pods
– Task 2: Working with deployments

39(c) 2018 Component Soft Ltd. - v1.11revdraf
t

4. Accessing the applications

– Services

40(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Services

– Service – an abstraction which defines a logical set of Pods and a
policy by which to access them

– The service maps an incoming port to a target port
– The pods targeted are defined by the selector → Endpoints
– We can have services without selector → no Endpoints object is

created automatically
– iptables proxies depends on working readiness probes
– Service discovery:

● Environment variables – are created when the pod is created → requires
ordering (the service should be defined first)

● DNS – optional cluster add-on. No ordering is required.

41(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Service types

– ClusterIP: Exposes the service on a cluster-internal IP – only
reachable from within the cluster. Default

– NodePort: Exposes the service on each Node’s IP at a static port.
The service will be reachable from outside the cluster using
NodeIP:NodePort

– LoadBalancer: Exposes the service externally using a cloud
provider’s load balancer.

– ExternalName: Maps the service to the contents of the
externalName field, by returning a CNAME record with its value.

42(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Working with Services

– Expose the ports of a deployment/RC
● kubectl expose deployment nginx --port=80 --type=NodePort

– Create services from file:
kind: Service

apiVersion: v1

metadata:
 name: my-service
spec:

 selector:
 app: MyApp
 ports:

 - protocol: TCP
 port: 80

 targetPort: 80

kubectl create -f svc1.yaml

43(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Working with Services

– Get service information:
● kubectl get svc
● kubectl describe svc

– Check service discovery
● kubectl exec -ti busybox env
● kubectl exec -ti busybox nslookup nginx

– Check the iptables rules on the nodes
● iptables -t nat -L -n
● iptables -L -n

44(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Exercise 4: Services

– Working with services

45(c) 2018 Component Soft Ltd. - v1.11revdraf
t

5. Persistent storage in kubernetes

– Volumes
– Persistent volumes and volume claims
– Secrets
– ConfigMaps

46(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Volumes

– By default the container filesystem is ephemeral – recreated each
time when the container starts → a clean state each time → can be
a problem for non trivial applications

– A pod can have multiple containers that are sharing files.
– A volume in the simplest form is just a directory which is accessible

to the containers in a pod.
– The type of volume determines the backend for the directory.
– The pod definition specifies what volumes are provided (the

spec.volumes field), and where are these mounted in the containers
(the spec.containers.volumeMounts field).

– The containers are independently specifying where to mount each
volume (the same volume can be mounted on different path in
different containers).

47(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Volume example

apiVersion: v1
kind: Pod
metadata:
 name: test-pd
spec:
 containers:
 - image: gcr.io/google_containers/test-webserver
 name: test-container
 volumeMounts:
 - mountPath: /cache
 name: cache-volume
 volumes:
 - name: cache-volume
 emptyDir: {}

48(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Volume types

– Kubernetes supports several volume types:
● emptyDir – initially empty; deleted when the pod is deleted (survives crashes)
● hostPath – mounts a directory from the host into the pod. The content is host

specific → pods with identical specs can behave differently on different nodes.
● gcePersistentDisk – mounts a Google Compute Engine (GCE) Persistent Disk

into the pod. Content preserved on pod delete → prepopulate, data “hand off”
● awsElasticBlockStore - mounts an Amazon Web Services EBS Volume into the

pod. Content preserved.
● nfs – allows an existing NFS share to be mounted into the pod. Allows multiple

writers. The server should be configured. Content is preserved.
● iscsi – single writer. Can be mounted read only by multiple pods.
● glusterfs – multiple writers.
● rbd - single writer. Can be mounted read only by multiple pods.
● cephfs – multiple writers.
● secret
● persistentVolumeClaim

49(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Persistent Volumes

– PersistentVolume (PV) – a cluster resource that hides the details of
storage implementation from the pod.

● Can be of different types (HostPath, NFS, iSCSI, RBD, … plugins)
● Are independent from the pods that are using them.

– PersistentVolumeClaim (PVC) – a request for storage by a pod.
● PVCs will consume PV resources.
● PVC can request size, access mode, storage class.

– StorageClass – describes the “classes” of storages
● Classes can map to quality-of-service levels, backup policies, …
● Allows for dynamic provisioning of Pvs.

– The pod definition will use the PVC for defining the volumes
consumed by the containers.

– Dynamic provisioning is possible using the StorageClass definition.
● A StorageClass will contain the provisioner and parameter fields.

50(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Persistent Volume example

– First we define the PV:
 apiVersion: v1
 kind: PersistentVolume

 metadata:
 name: nfs001
 spec:
 capacity:

 storage: 10Gi

 accessModes:
 - ReadWriteOnce
 persistentVolumeReclaimPolicy: Recycle
 storageClassName: slow

 nfs:
 path: /tmp

 server: 10.10.10.1

51(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Persistent Volume example (cont)

– We define the PVC (the claim):

kind: PersistentVolumeClaim

apiVersion: v1
metadata:
 name: myclaim
spec:

 accessModes:

 - ReadWriteOnce
 resources:
 requests:
 storage: 8Gi

 storageClassName: slow

52(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Persistent Volume example (cont)

– the Pod (the consumer):
kind: Pod
apiVersion: v1

metadata:
 name: mypod
spec:
 containers:

 - name: myfrontend

 image: dockerfile/nginx
 volumeMounts:
 - mountPath: "/var/www/html"
 name: mypd

 volumes:
 - name: mypd

 persistentVolumeClaim:
 claimName: myclaim

53(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Secrets

– Secret objects are intended to hold sensitive information, such as
passwords.

– Safer than putting sensitive information into pod definition, or docker
images.

– Secrets can be used by pods as files in a volume, or injected by the
kubelet.

– Secrets can be created from files, or directly specifying them:
● kubectl create secret generic mysql --from-literal=password=mypasswd

– Checking secrets:
● kubectl get secret mysql -o yaml

54(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Using Secrets as environmental variables

. . .
spec:
 containers:
 - image: mysql:5.5
 name: mysql
 env:
 - name: MYSQL_ROOT_PASSWORD
 valueFrom:
 secretKeyRef:
 name: mysql
 key: password

55(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Using Secrets as volumes
...
spec:
 containers:

 - image: busybox
 command:

 - sleep
 - "3600"

 volumeMounts:
 - mountPath: /mysqlpassword
 name: mysql
 name: busy

 volumes:

 - name: mysql
 secret:
 secretName: mysql

● kubectl exec -ti busybox -- cat /mysqlpassword/password

56(c) 2018 Component Soft Ltd. - v1.11revdraf
t

ConfigMaps

– ConfigMap objects are intended for passing information that tends to
be stored in a single config file

– Can store key-value pairs, or plain configuration files
● kubectl create configmap special-config --from-literal=special.how=very
● kubectl create configmap mymap –from-file=app.conf

– Check the values stored in the map
● kubectl get configmap mymap -o yaml

– Passing values to pods:
● As environmental variables (part of the pod definition):

env:
 - name: SPECIAL_LEVEL_KEY
 valueFrom:
 configMapKeyRef:
 name: special-config
 key: special.how

● As volumes:
volumes:
 - name: config-volume
 configMap:
 name: special-config

57(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Exercise 5: Storage in Kubernetes

– Use a volume in two containers

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

