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Introduction

● Cloud computing in general
● Cloud native computing
● Kubernetes overview
● Kubernetes architecture 
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Cloud computing in general

● a model for enabling ubiquitous network access to a 
shared pool of configurable computing resources*
– resources (compute, storage, network, apps) as services

● resources are allocated on demand
– scaling and removal also happens rapidly ( seconds-minutes)

● multi-tenancy
– share resources among thousands of users
– resource quotas

– cost effective IT
● Pay-As-You-Go model

– pay per hour/gigabyte instead of flat rate
● maximized effectiveness of the shared resources

– maybe over-provisioning
● lower barriers to entry (nice for startups)

– focus on your business instead of your infrastructure
*definition by NIST
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Cloud native computing

– a new computing paradigm that is optimized for modern 
distributed systems environments capable of scaling to tens of 
thousands of self healing multi-tenant nodes.

– Main properties:
● Container packaged – containers represents an isolated unit of application 

deployment.

● Dynamically managed  - actively scheduled and actively managed by a 
central orchestrating process.

● Micro-services oriented - loosely coupled with dependencies explicitly 
described (e.g. through service endpoints).
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Application containers 

– OS level virtualization – OS partitioning (virtual OS vs virtual HW)

– Allows us to run multiple isolated user-space application 
instances in parallel. 

– Instances will have:
● Application code

● Required libraries

● Runtime

– Self sufficient – no external dependencies

– Portable

– Lightweight

– Immutable images Hardware

Operating system
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Container orchestration

– tools that are providing an enterprise-level framework for 
integrating and managing containers at scale.

– aim to simplify container management
● a framework for defining initial container deployment
● availability
● scaling
● networking

– Docker Swarm

– Mesosphere Marathon

– Kubernetes
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Kubernetes

– Kubernetes – ancient Greek word for helmsman 
or pilot of the ship

– Initially developed by google

– Has its origins in Borg cluster manager 

– “Kubernetes is an open-source system for 
automating deployment, scaling, and 
management of containerized applications.”

– Places containers on nodes

– Recovers from failure

– Basic monitoring, logging, health checking

– Enables containers to find each other

https://research.google.com/pubs/pub43438.html


9(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Kubernetes concepts

– Kubernetes Master – maintains the desired state for the cluster

– Kubernetes Node – runs the applications

– Kubernetes objects - abstractions that represent the state of 
the cluster.

● A “record of intent” - a desired state of the cluster
● Objects have

– Spec – describes its desired state
– State – describes the actual state; updated by  Kubernetes.
– Name – client provided; unique for a kind in a namespace, can be 

reused
– Namespaces – virtual clusters; provides a scope for names.
– Labels – key-value pairs attached to objects
– Label selector – is the core grouping primitive
– Annotations – attach arbitrary non-identifying metadata to 

objects
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Kubernetes objects categories

– Workloads – used to manage and run the containers (Pod, 
ReplicationController, deployment)

– Discovery & LB – "stitck"  workloads together into an externally 
accessible, load-balanced Service (Service, Ingress).

– Config & Storage – objects we can use to inject initialization 
data into applications, and to persist data that is external to the 
containers (Volume, Secret).

– Metadata – objects used to configure the behavior of other 
resources within the cluster (LimitRange)

– Cluster – objects responsible for defining the configuration of 
the cluster itself (Namespace, Binding)
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Kubernetes architecture

– Kubernetes master

– Kubernetes node 

Kubernetes master

API Server

Controller 
Manager

Scheduler

etcd

Kubernetes node

Kubelet Kube-Proxy

Pod Pod Pod Pod...

.

.

.

Container engine

Kubernetes node

Kubelet Kube-Proxy

Pod Pod Pod Pod...

Container engine

Users

Kubernetes node

Devops
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Kubernetes master

– provide the cluster’s control plane
– kube-apiserver

● Exposes the Kubernetes API – the front-end 
for the Kubernetes control plane.

● Designed to scale horizontally.

– etcd
● Is the backing store of Kubernetes.
● Distributed key-value store

– Kube-controller-manager
● background threads that handle routine tasks

– Node Controller
– Replication Controller
– Endpoints Controller
– Service Account & Token Controllers

– kube-scheduler
● Assigns nodes to the newly created pods

     Kubernetes master

API Server

Controller 
Manager

Scheduler

etcd
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Kubernetes node

– kubelet - the primary node agent. It watches for pods that have 
been assigned to its node and:

● Mounts the pod’s required volumes.
● Downloads the pod’s secrets.
● Runs the pod’s containers.
● Periodically executes any requested container 

liveness probes.
● Reports the status of the pod.
● Reports the status of the node.

– kube-proxy
● enables the Kubernetes service abstraction by maintaining network rules 

on the host and performing connection forwarding

– Container engine
● Used to run the containers
● Docker by default, rkt optionally. 
● Container Runtime Interface – paves the way to alternative runtimes

Kubernetes node

Kubelet Kube-Proxy

Pod Pod
...

Container engine
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Exercise 1: The lab environment

– Understanding 

the classroom

environment

– Using kubectl
br_management
10.10.10.0/24Lab machine:
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2. Accessing the kubernetes API 

– Ways to access the API
– Controlling access to the API
– Authentication
– Authorization
– Role Based Access Control
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Accessing the kubernetes cluster

– kubectl – the command line tool for deploying and managing 
applications on kubernetes

● Inspect cluster resources
● Create, delete, update components
● Configuration file: ~/.kube/config – information for finding and accessing 

a cluster 
● bash autocompletion

– Dashboard – web based user interface (add-on)
● Manage applications
● Manage the cluster itself

– Direct access to the API 
● HTTP REST
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Controlling access to the API

– A request for the API will pass several stages before reaching it

Authentication Authorization
Admission 

control
ResourceResource

Request

– Authentication – Ensures that the user it is who it pretends to be
– Kubernetes has 2 categories of users:

● Service accounts – managed by kubernetes
● Normal users – managed by an independent service

– API requests can be treated as anonymous ones if are not tied 
to a user or service account.

– Kubernetes uses client certificates, bearer tokens, an 
authenticating proxy, or HTTP basic auth to authenticate API 
requests through authentication plugins.



18(c) 2018 Component Soft Ltd. - v1.11revdraf
t

Authorization

– After the user authentication step the request will have to pass the 
authorization step.

– All parts of an API request must be allowed by some policy → 
permissions are denied by default.

– Authorization modules
● Node
● ABAC – Attribute-based access control
● RBAC – Role-based access control
● Webhook 
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Role Based Access Control

– RBAC allows fine grained rules for accessing the cluster
– allows dynamic configuration of policies through the Kubernetes API.
– uses the “rbac.authorization.k8s.io” API group 
– It defines Roles and RoleBindings in order to assign permissions to 

subjects.
– These permissions can be set

● Clusterwide – can be used for cluster-scoped resources, non-resource 
endpoints, namespaced resources across all namespaces

● Within a namespace.
● For one single resource.

– Subjects can be users, groups, and service accounts
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Roles and ClusterRoles

– RBAC roles contains the rules that represent the permissions
– Permissions are purely additive
– A role can be defined within a namespace, or cluster-wide 

(ClusterRole)
kind: Role
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:

   namespace: default

   name: pod-reader
rules:
 - apiGroups: [""] 

   resources: ["pods"]
   verbs: ["get", "watch", "list"]

– ClusterRoles are not namespaced
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Role bindings

– Role binding grants the permissions defined in a role to a subject.
– Permissions can be granted within a namespace with a RoleBinding, 

or cluster-wide with a ClusterRoleBinding
– A RoleBinding can use a ClusterRole. The rules will apply to the 

namespace of the binding.
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
   name: read-pods
   namespace: development 
subjects:
 - kind: User
   name: dave
   apiGroup: rbac.authorization.k8s.io
roleRef:
   kind: ClusterRole
   name: cluster-pod-reader
   apiGroup: rbac.authorization.k8s.io
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Exercise 2: RBAC

– Use RBAC to control access to the API
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3. Kubernetes workloads

– Pod
– Replication controllers
– Deployments, Replica sets
– Jobs and CronJobs
– DaemonSets
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The pod

– Pod - the smallest deployable object in the Kubernetes object model.
– It runs a single instance of an application
– Contains

● One or more application containers
● Storage resources
● A unique IP address
● Options about how the container(s) should run.

– Containers in one pod are sharing the 
network namespace and storage resources

– A pod is scheduled on a node and remains 
there until terminated or evicted

– Pods do not self-heal by themselves → 
controller.
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The pod (cont)

– Pod lifecycle:
● Pending – pod has been accepted by the Kubernetes system, but one or more 

of the Container images has not been created.
● Running – has been bound to a node, all of the containers have been created. 

At least one container is still running (or starting / restarting).
● Succeeded – all containers have terminated in success, and will not be 

restarted
● Failed - All Containers have terminated; at least one has terminated in failure.
● Unknown – the state of the pod could not be obtained

– Probes – performed by the kubelet on a Container using a handler
● Probe types – what is testing: readinessProbe, livenessProbe
● Handler Types – how is testing: ExecAction, TCPSocketAction, HTTPGetAction
● Probe result: Success, Failure, Unknown

– Restart policy – restarts a pod based on the liveness test result
● restartPolicy: Always, OnFailure, Never

– Pods are restarted on the same node, only controllers can schedule 
a new pod on a different node.
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Our first Pod

Describe the Pod using a YAML file:
 
apiVersion: v1

kind: Pod

metadata:

  name: busybox

spec:

  restartPolicy: OnFailure

  containers:

   ­ name: busybox

     image: busybox

     command:

       ­ sleep

     args:

       ­ "100"
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Operations on pods

– Create the pod using the kubectl command:
● kubectl create -f pod1.yaml

– Check the pod status
● kubectl get pod busybox [-o wide]
● kubectl get pod --watch

– Get information about the pod
● kubectl describe pod busybox
● kubectl get pod busybox -o yaml

– Check the logs of a pod
● kubectl logs busybox

– Execute a command inside the pod
● kubectl exec -ti busybox sh

– Delete the pod
● kubectl delete pod busybox
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ReplicaSet

– The ReplicaSet controller simply 
ensures that the desired number of 
pods matches its label selector 
exists and are operational

– If the labels of the pod are modified 
and they do not match the label 
selector, then a new pod is spawned, 
the old one stays there.

– The ReplicaSet provide a declarative 
definition of what a Pod should be 
and how many of it should be running 
at a time.

apiVersion: apps/v1
kind: ReplicaSet
metadata:
  name: nginx
spec:
  replicas: 3
  selector:
    matchLabels:
      app: nginx
  template:
    metadata:
      name: nginx
      labels:
        app: nginx
    spec:
      containers:
      - name: nginx
        image: nginx

rs1.yaml
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Working with ReplicaSet

– Create the ReplicaSet
● kubectl create -f rs1.yaml

– Check the status
● kubectl get rs [--watch]
● kubectl describe rs nginx

– Change the number of replicas
● kubectl scale rs nginx --replicas=3

– Delete the ReplicaSet
● kubectl delete rs nginx
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Deployments

– A Deployment provides declarative updates for Pods and 
ReplicaSets

– Deployment creates ReplicaSet, which creates the Pods
– Updating a deployment creates new ReplicaSet and updates the 

revision of the deployment.
– During update pods from the initial RS are scaled down, while pods 

from the new RS are scaled up.
– Rollback to an earlier revision, will update the revision of Deployment
– The --record flag of kubectl allows us to record current command in 

the annotations of the resources being created or updated
– Strategy – how to replace the old pods 

● Rolling update (default): maxUnavailable, maxSurge
● Recreate
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Working with Deployments

– Creating a deployment
● kubectl run ghost --image=ghost --record
● kubectl create -f dep1.yaml --record
● dep1.yaml:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: nginx
spec:
  replicas: 3
  template:
    metadata:
      labels:
        app: nginx
    spec:
      containers:
      - name: nginx
        image: nginx
        ports:
        - containerPort: 80
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Working with Deployments (cont)

– Check the status
● kubectl get deployment nginx [--watch]
● kubectl get deployment nginx -o yaml
● kubectl describe deployment nginx

– Scale a deployment
● kubectl scale deployment nginx --replicas=4
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Working with Deployments (cont)

– Update a deployment
● kubectl set image deployment/nginx nginx=nginx:1.7.9 --all=true
● kubectl edit deployment nginx 

– Check the status of a rollout
● kubectl rollout status deployment nginx
● kubectl rollout history deployment nginx

– Undo a rollout
● kubectl rollout undo deployment/nginx [--to-revision=2]

– Pause and resume a deployment – allows multiple changes
● kubectl rollout pause deployment/nginx 
● kubectl rollout resume deployment/nginx 
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Jobs, CronJobs

– A job creates one or more pods and ensures that a specified number 
of them successfully terminate.

– Jobs can be used to reliably run a Pod to completion the specified 
number of times (.spec.completions)

– Jobs can run multiple Pods in parallel (.spec.parallelism)
– Pods in a Job can only use Never or OnFailure as their RestartPolicy
– It is up to the user to delete old jobs after noting their status
– Deleting a Job will delete the related Pods
– If Pods are failing, the Job will create new Pods forever. The 

.spec.activeDeadlineSeconds will limit the time for which a Job will 
create new Pods.

– CronJobs can create Jobs once or repeatedly at specified times
– .spec.jobTemplate will specify the Job to be created
– concurrencyPolicy: Allow, Forbid, Replace
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Jobs example

apiVersion: batch/v1

kind: Job
metadata:

  name: pi
spec:

  completions: 10
  parallelism: 3
  template:
    metadata:

      name: pi

    spec:
      containers:
      - name: pi
        image: perl
        command: ["perl",  "-Mbignum=bpi", "-wle", "print bpi(2000)"]

      restartPolicy: Never
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CronJobs example

apiVersion: batch/v2alpha1
kind: CronJob
metadata:
  name: cron-pi
spec:
  schedule: "*/1 * * * *"
  jobTemplate:
   spec:
    completions: 10
    parallelism: 3
    template:
     metadata:
       name: pi
     spec:
       containers:
       - name: pi
         image: perl
         command: ["perl",  "-Mbignum=bpi", "-wle", "print bpi(2000)"]
       restartPolicy: Never
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DaemonSets

– A DaemonSet ensures that all (or some) nodes run a copy of a pod
– When nodes are added to the cluster, pods are added to them
– When nodes are removed from the cluster, those pods are garbage 

collected
– To run pods only on some nodes:

● .spec.template.spec.nodeSelector – pods started on nodes that match the 
node selector

● .spec.template.spec.affinity – pods are created on nodes that match the node 
affinity

– If node labels are changed, the DaemonSet will promptly adapt
– Deleting a DaemonSet will delete the pods (except –cascade=false)
– UpdateStrategy:

● OnDelete - new pods will only be created when the old ones are manually 
deleted

● RollingUpdate - after you update a DaemonSet template, old pods will be killed
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Exercise 3: Kubernetes workloads

– Task 1: Working with pods
– Task 2: Working with deployments
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4. Accessing the applications

– Services
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Services

– Service – an abstraction which defines a logical set of Pods and a 
policy by which to access them

– The service maps an incoming port to a target port
– The pods targeted are defined by the selector → Endpoints
– We can have services without selector → no Endpoints object is 

created automatically
– iptables proxies depends on working readiness probes
– Service discovery:

● Environment variables – are created when the pod is created → requires 
ordering (the service should be defined first)

● DNS – optional cluster add-on. No ordering is required.
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Service types

– ClusterIP: Exposes the service on a cluster-internal IP – only 
reachable from within the cluster. Default

– NodePort: Exposes the service on each Node’s IP at a static port. 
The service will be reachable from outside the cluster using 
NodeIP:NodePort

– LoadBalancer: Exposes the service externally using a cloud 
provider’s load balancer.

– ExternalName: Maps the service to the contents of the 
externalName field, by returning a CNAME record with its value.
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Working with Services

– Expose the ports of a deployment/RC
● kubectl expose deployment nginx --port=80 --type=NodePort

– Create services from file:
kind: Service

apiVersion: v1

metadata:
  name: my-service
spec:

  selector:
    app: MyApp
  ports:

    - protocol: TCP
      port: 80

      targetPort: 80

kubectl create -f svc1.yaml
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Working with Services

– Get service information:
● kubectl get svc
● kubectl describe svc

– Check service discovery
● kubectl exec -ti busybox env
● kubectl exec -ti busybox nslookup nginx

– Check the iptables rules on the nodes
● iptables -t nat -L -n
● iptables -L -n
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Exercise 4: Services

– Working with services
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5. Persistent storage in kubernetes

– Volumes
– Persistent volumes and volume claims
– Secrets
– ConfigMaps
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Volumes

– By default the container filesystem is ephemeral – recreated each 
time when the container starts → a  clean state each time → can be 
a problem for non trivial applications

– A pod can have multiple containers that are sharing files.
– A volume in the simplest form is just a directory which is accessible 

to the containers in a pod.
– The type of volume determines the backend for the directory.
– The pod definition specifies what volumes are provided (the 

spec.volumes field), and where are these mounted in the containers 
(the spec.containers.volumeMounts field).

– The containers are independently specifying where to mount each 
volume (the same volume can be mounted on different path in 
different containers).
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Volume example

apiVersion: v1
kind: Pod
metadata:
  name: test-pd
spec:
  containers:
  - image: gcr.io/google_containers/test-webserver
    name: test-container
    volumeMounts:
    - mountPath: /cache
      name: cache-volume
  volumes:
  - name: cache-volume
    emptyDir: {}
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Volume types

– Kubernetes supports several volume types:
● emptyDir – initially empty; deleted when the pod is deleted (survives crashes)
● hostPath – mounts a directory from the host into the pod. The content is host 

specific → pods with identical specs can behave differently on different nodes.
● gcePersistentDisk – mounts a Google Compute Engine (GCE) Persistent Disk 

into the pod. Content preserved on pod delete → prepopulate, data “hand off”
● awsElasticBlockStore - mounts an Amazon Web Services EBS Volume into the 

pod. Content preserved.
● nfs – allows an existing NFS share to be mounted into the pod. Allows multiple 

writers. The server should be configured. Content is preserved.
● iscsi – single writer. Can be mounted read only by multiple pods.
● glusterfs – multiple writers.
● rbd - single writer. Can be mounted read only by multiple pods.
● cephfs – multiple writers.
● secret
● persistentVolumeClaim
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Persistent Volumes

– PersistentVolume (PV) – a cluster resource that hides the details of 
storage implementation from the pod.

● Can be of different types (HostPath, NFS, iSCSI, RBD, … plugins)
● Are independent from the pods that are using them.

– PersistentVolumeClaim (PVC) – a request for storage by a pod.
● PVCs will consume PV resources.
● PVC can request size, access mode, storage class.

– StorageClass – describes the “classes” of storages
● Classes can map to quality-of-service levels, backup policies, …
● Allows for dynamic provisioning of Pvs.

– The pod definition will use the PVC for defining the volumes 
consumed by the containers.

– Dynamic provisioning is possible using the StorageClass definition.
● A StorageClass will contain the provisioner and parameter fields.
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Persistent Volume example

– First we define the PV:
  apiVersion: v1
  kind: PersistentVolume

  metadata:
    name: nfs001
  spec:
    capacity:

      storage: 10Gi

    accessModes:
      - ReadWriteOnce
    persistentVolumeReclaimPolicy: Recycle
    storageClassName: slow

    nfs:
      path: /tmp

      server: 10.10.10.1
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Persistent Volume example (cont)

– We define the PVC (the claim):

kind: PersistentVolumeClaim

apiVersion: v1
metadata:
  name: myclaim
spec:

  accessModes:

    - ReadWriteOnce
  resources:
    requests:
      storage: 8Gi

  storageClassName: slow
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Persistent Volume example (cont)

– the Pod (the consumer):
kind: Pod
apiVersion: v1

metadata:
  name: mypod
spec:
  containers:

    - name: myfrontend

      image: dockerfile/nginx
      volumeMounts:
      - mountPath: "/var/www/html"
        name: mypd

  volumes:
    - name: mypd

      persistentVolumeClaim:
        claimName: myclaim
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Secrets

– Secret objects are intended to hold sensitive information, such as 
passwords.

– Safer than putting sensitive information into pod definition, or docker 
images.

– Secrets can be used by pods as files in a volume, or injected by the 
kubelet.

– Secrets can be created from files, or directly specifying them:
● kubectl create secret generic mysql --from-literal=password=mypasswd

– Checking secrets:
● kubectl get secret mysql -o yaml
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Using Secrets as environmental variables

. . . 
spec:
    containers:
    - image: mysql:5.5 
      name: mysql 
      env:
      - name: MYSQL_ROOT_PASSWORD
        valueFrom:
            secretKeyRef:
                name: mysql
                key: password
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Using Secrets as volumes
...
spec:
    containers:

    - image: busybox
      command:

        - sleep
        - "3600"

      volumeMounts:
      - mountPath: /mysqlpassword
        name: mysql
      name: busy

    volumes:

    - name: mysql
        secret:
            secretName: mysql

● kubectl exec -ti busybox -- cat /mysqlpassword/password
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ConfigMaps

– ConfigMap objects are intended for passing information that tends to 
be stored in a single config file

– Can store key-value pairs, or plain configuration files
● kubectl create configmap special-config --from-literal=special.how=very 
● kubectl create configmap mymap –from-file=app.conf

– Check the values stored in the map
● kubectl get configmap mymap -o yaml

– Passing values to pods:
● As environmental variables (part of the pod definition):

env:
        - name: SPECIAL_LEVEL_KEY
          valueFrom:
            configMapKeyRef:
                name: special-config
                key: special.how

● As volumes:
volumes:
    - name: config-volume
      configMap:
        name: special-config
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Exercise 5: Storage in Kubernetes

– Use a volume in two containers
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