Distributed Network Function Virtualization

Fred Oliveira, Fellow at Verizon
Sarath Kumar, Software Engineer at Big Switch Networks
Rimma Iontel, Senior Architect at Red Hat
Outline

- What is Distributed NFV?
- Why do we need Distributed NFV?
 - Verizon Use Case
- How do we implement Distributed NFV?
 - Architecture
 - Pitfalls
- Verizon + BigSwitch + Red Hat joint solution
 - Lab setup
 - Findings
- Wrap Up
- Q & A
Distributed NFV Architecture
Component Placement

● Distributed deployment of Network Functions at multiple sites with some level of remote control over those deployment models, traffic management for OpenStack and VNFs
 ○ Core Data Center
 ■ Deployment Tools
 ■ Network Controllers
 ■ Cloud Controllers
 ■ Orchestration
 ■ Monitoring, Troubleshooting and Analytics
 ■ Centralized Applications
 ○ Remote Sites
 ■ Compute Nodes running Edge Applications
Areas of Application

- Thick CPE (Customer Premise Equipment)
 - Enterprise
 - On-premise:
 - VNFs
 - Ex: FW, LB, WAN Optimization, NAT
 - Limited storage
 - In central DC:
 - Policy management and enforcement
 - Subscriber management
 - IPSec termination
 - Additional VNFs + SFC
 - Residential
 - On-premise:
 - VNFs
 - Ex: FW, NAT
 - Limited storage
 - In central DC:
 - Additional VNFs

- Remote POP
 - Web Cache
 - Video Streamers

- Mobile Edge Computing
Verizon Use Case - Distributed Network Services

- Support for new NFV services requires large number of small deployments
 - Low latency for highly interactive applications (VR, AR)
 - High bandwidth video and graphics distribution
 - Edge-Datacenter support with 4-16 servers at each hundreds of locations
 - Potentially scale to a single (micro) server (CPE) at 10s of thousands of retail locations
- Improve customer experience by providing on-demand software services
- Reduce cost of service delivery
- Multiple classes of Reliability and Availability
Verizon Scenario
Evolving Economics of Networking and Computing

- Historical Processing/Storage unit costs decreasing faster than Routing/Transport
- These trends drive placing cache (CDN) closer to end users
- Continuation of these trends will make Distributed NFV more economically compelling for other network services

Content Delivery Cost is a combination of **Processing + Storage** and **Routing + Transport Costs**
Goal: Customer Access to Distributed NFV Infrastructure

- Dynamic network services provided efficiently to customers
- Leverage most appropriate infrastructure to deliver the service
 - Efficient access to scalable services
 - Multiple reliability/availability classes of service
- Support for dynamic service graphs to enable distributed services
- Scalable highly-available service management
Lab Implementation Architecture
Challenges

● Deployment of Remote Compute Nodes across WAN
 ○ Extending L2 for provisioning
 ○ Network latency

● OpenStack Control Plane Communication
 ○ Network latency effect on the Message Bus and Database Access
 ○ Orchestration
 ○ Application deployment
 ○ Failure detection

● Service Resiliency
 ○ Headless operation
 ○ Service recovery

● Network Configuration, Maintenance and Troubleshooting
Lab Setup

Core Data Center

- Big Cloud Fabric Controller Cluster
- Spine switches
- TOR Leaf switches
- RHOSP Director (Undercloud)
- OpenStack Controllers (Overcloud)
- Compute nodes running Switch Light VX (virtual switch)

Remote Site-1

- TOR Leaf switches
- Compute nodes running Switch Light VX (virtual switch)

Latency Generator
Lab Setup: Physical Topology

Core DC
- BCF Controller Cluster
- RHOSP Director
- Openstack Controller
- Compute Nodes running SWL-VX

Remote Site-1
- Leaf
- Compute Nodes running SWL-VX

Physical Topology
- 10G Inband ports to the Leaf for virtual switch control path
- Management Switch for Out-of-band Management Network
- L2 link between Core DC & Remote Site-1 for BCF to physical switch control path
- Virtual Wire to send all traffic between Core DC & Remote Site-1, for Leaf to Spine data path
Test Objective

Validate fabric resiliency with WAN latency [0-40ms]

Control path latency

- Big Cloud Fabric out-of-band management network for physical switches
- Big Cloud Fabric in-band management network for virtual switches
- OpenStack control plane communications
Tests Performed

Ping from a VM in the Core DC to a VM on the Remote Site-1

Success Criteria: No ping packets lost

- Controller failures
 - Failover
 - Headless mode
- Spine and leaf switch disconnects and reconnects
- Spine and leaf switch interface up/down
 - Spine to leaf connectivity
 - Leaf to compute connectivity
- Spine and leaf switch reboots
Wrap Up

● **Telecom provider concerns**
 ○ Distributed NFV architecture is essential for a variety of carrier use cases and needs to be supported across the layers of the stack, from networking to message bus to applications
 ○ Latency and network availability might potentially affect both initial deployment and day two operation

● **Infrastructure providers’ answers**
 ○ Red Hat OpenStack Platform components are able to handle delays produced by deployment across the WAN
 ○ Big Switch Networks proved that the Big Cloud Fabric was resilient even across the WAN
Q & A