

OPENSTACK WHITE PAPER

Exploring
Opportunities:
Containers and
OpenStack

.

www.openstack.org

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/

2015

Contributors:
Kathy Cacciatore, Consulting Marketing Manager, OpenStack Foundation
Paul Czarkowski, Cloud Engineer, Blue Box, An IBM Company
Steven Dake, Kolla Project Technical Lead (PTL), Principal Engineer - OpenStack, Cisco Systems, Inc.
John Garbutt, Nova PTL, Principal Engineer, Rackspace
Boyd Hemphill, Technology Evangelist, StackEngine
John Jainschigg, Technology Solutions Marketing, Mirantis Inc.
Andre Moruga, Director of Program Management/Server Virtualization, Odin
Adrian Otto, Magnum PTL, Distinguished Architect, Rackspace
Craig Peters, Director of Product Management, Mirantis Inc.
Brian E. Whitaker, Founder, Zettabyte Content LLC

www.openstack.org

Executive Summary
“The important thing for us as a community is to think about OpenStack as
an integration engine that’s agnostic,” Collier said. “That puts users in the best
position for success. Just like we didn’t reinvent the wheel when it comes to
compute, storage and networking, we’ll do the same with containers.”
- Mark Collier, COO, OpenStack Foundation

Containers are certainly a hot topic. The OpenStack® User Survey indicates over half of the
respondents are interested in containers in conjunction with their OpenStack clouds for
production uses. Thanks to new open source initiatives, primarily Docker, containers have
gained signi�cant popularity lately among Developer and Ops communities alike.

The Linux® kernel has supported containers for several years, and now even Microsoft®
Windows® is following suit. However, container use in the enterprise remains an emerging
opportunity since standards are still being formed, the toolset ecosystem around containers
is relatively new, and ROI is uncertain.

Containers are an evolving technology and OpenStack is evolving to support them, just as it
has supported other emerging technologies in the past. Rather than create new vertical silos
to manage containers in their data centers, IT organizations �nd value in OpenStack
providing a cross-platform API to manage virtual machines, containers and bare metal.

Trevor Pott, writing for The Register, provides perspective.

Container support is just another example of the basic value proposition for OpenStack - that
by utilizing OpenStack as the foundation of a cloud strategy, you can add in new, even
experimental technologies, and then deploy them to production when the time is right, all
with one underlying cloud infrastructure - without compromising multi-tenant security and
isolation, management and monitoring, storage and networking and more.

In order to support accelerating interest in containers and highlight opportunities, this paper
o�ers readers a comprehensive understanding of containers and container management in
the context of OpenStack. This paper will describe how various services related to containers
are being developed as �rst-class resources in current and upcoming releases of OpenStack.

1 http://www.theregister.co.uk/2015/07/09/openstack_overview/

What are containers?
Containers are isolated, portable environments where you can run applications along with all the
libraries and dependencies they need. Containers aren’t virtual machines. In some ways they are
similar, but there are even more ways that they are di�erent. Like virtual machines, containers
share system resources for access to compute, networking, and storage. They are di�erent because
all containers on the same host share the same OS kernel, and keep applications, runtimes, and
various other services separated from each other using kernel features known as namespaces and
cgroups. Docker added the concept of a container image, which allows containers to be used on
any host with a modern Linux kernel. Soon Windows applications will enjoy the same portability
among Windows hosts as well. The container image allows for much more rapid deployment of
applications than if they were packaged in a virtual machine image.

01

“OpenStack is not a cloud. It is not a project or a product. It is not a
virtualization system or an API or a user interface or a set of standards.
OpenStack is all of these things and more: it is a framework for doing IT
infrastructure – all IT infrastructure – in as interchangeable and
interoperable a way as we are ever likely to know how.”1

www.openstack.org

stack®open

Executive Summary
“The important thing for us as a community is to think about OpenStack as
an integration engine that’s agnostic,” Collier said. “That puts users in the best
position for success. Just like we didn’t reinvent the wheel when it comes to
compute, storage and networking, we’ll do the same with containers.”
- Mark Collier, COO, OpenStack Foundation

Containers are certainly a hot topic. The OpenStack® User Survey indicates over half of the
respondents are interested in containers in conjunction with their OpenStack clouds for
production uses. Thanks to new open source initiatives, primarily Docker, containers have
gained signi�cant popularity lately among Developer and Ops communities alike.

The Linux® kernel has supported containers for several years, and now even Microsoft®
Windows® is following suit. However, container use in the enterprise remains an emerging
opportunity since standards are still being formed, the toolset ecosystem around containers
is relatively new, and ROI is uncertain.

Containers are an evolving technology and OpenStack is evolving to support them, just as it
has supported other emerging technologies in the past. Rather than create new vertical silos
to manage containers in their data centers, IT organizations �nd value in OpenStack
providing a cross-platform API to manage virtual machines, containers and bare metal.

Trevor Pott, writing for The Register, provides perspective.

Container support is just another example of the basic value proposition for OpenStack - that
by utilizing OpenStack as the foundation of a cloud strategy, you can add in new, even
experimental technologies, and then deploy them to production when the time is right, all
with one underlying cloud infrastructure - without compromising multi-tenant security and
isolation, management and monitoring, storage and networking and more.

In order to support accelerating interest in containers and highlight opportunities, this paper
o�ers readers a comprehensive understanding of containers and container management in
the context of OpenStack. This paper will describe how various services related to containers
are being developed as �rst-class resources in current and upcoming releases of OpenStack.

What are containers?
Containers are isolated, portable environments where you can run applications along with all the
libraries and dependencies they need. Containers aren’t virtual machines. In some ways they are
similar, but there are even more ways that they are di�erent. Like virtual machines, containers
share system resources for access to compute, networking, and storage. They are di�erent because
all containers on the same host share the same OS kernel, and keep applications, runtimes, and
various other services separated from each other using kernel features known as namespaces and
cgroups. Docker added the concept of a container image, which allows containers to be used on
any host with a modern Linux kernel. Soon Windows applications will enjoy the same portability
among Windows hosts as well. The container image allows for much more rapid deployment of
applications than if they were packaged in a virtual machine image.

02

Figure 1: Containers vs. VMs

www.openstack.org

stack®open

Containers o�er deployment speed advantages over virtual machines because they’re smaller
megabytes instead of gigabytes. Typical application containers can be started in seconds,
whereas virtual machines often take minutes. Containers also allow direct access to device drivers
through the kernel, which makes I/O operations faster than with a hypervisor approach where
those operations must be virtualized. Even in environments with hundreds or thousands of
containers, this speed advantage can be signi�cant and contributes to overall responsiveness new
workloads can be brought online quickly and make boot storms become a thing of the past.

Containers create a proliferation of compute units, and without robust monitoring, management,
and orchestration, IT administrators will be coping with “container sprawl”, where containers are
left running, mislocated or forgotten. As a result, some third-party ecosystem tools have become
so synonymous with containers that they need to be mentioned, in the context of OpenStack.

The three most common are Docker Swarm, Kubernetes, and Mesos.

Docker2 popularized the idea of the container image. They provide a straightforward way for
developers to package an application and its dependencies in a container image that can run on
any modern Linux, and soon Windows, server. Docker also has additional tools for container
deployments, including Docker Machine, Docker Compose, and Docker Swarm. At the highest
level, Machine makes it easy to spin up Docker hosts, Compose makes it easier to deploy complex
distributed apps on Docker, and Swarm enables native clustering for Docker.

Kubernetes3 (originally by Google, now contributes to the Cloud Native Computing Foundation4)
is an open source orchestration system for Docker containers. It handles scheduling onto nodes in
a compute cluster and actively manages workloads to ensure that their state matches the user's’
declared intentions.

Apache Mesos5 can be used to deploy and manage application containers in large-scale clustered
environments. It allows developers to conceptualize their applications as jobs and tasks. Mesos, in
combination with a job system like Marathon, takes care of scheduling and running jobs and tasks.

OpenStack refers to these three options as Container Orchestration Engines (COE). All three of
these COE systems are supported in OpenStack Magnum, the containers service for OpenStack,
that allows your choice of COE to be automatically provisioned in a collection of compute
instances where your containers are run.

03

Today, containers are being used for two major purposes.

An entire system – operating system, applications, services, etc. – can exist inside a container.
These are called, appropriately enough, system or OS containers. System containers’ use cases
are e�ectively similar to those of virtual machines.

However, application containers are di�erent. Containers are a way of bundling and running
applications in a more portable way. They can be used to break down and isolate parts of
applications, called microservices, which allow for more granular scaling, simpli�ed management,
superior security con�gurations, and solving a class of problems previously addressed with
con�guration management (CM) tools. They are not a replacement for virtualization or CM.

A developer can put an application or service inside a container, along with the runtime requisites
and services the application requires, without having to include a full operating system. This
allows container images to be small, usually just a few megabytes in size compared to virtual
machine images which can be orders of magnitude larger.

Containers have been around for years, but they didn’t become popular until various vendors
started de�ning container images. Conceptually a container image can be thought of as a snapshot
of a container's �lesystem that can be stored on disk. The container �lesystem is arranged in layers,
like how a series of commits are arranged in a git repository. This allows the container image to
indicate which parent image it is derived from, allowing it to be very small by comparison. All it
needs are the bits that are di�erent from its parent. This is why they can be so much smaller.
Container images allow tools like Docker to simplify container creation and deployment, using a
single command to launch the app with all its requisites. The concept of the container image, and
the layering features associated with that concept, was really the missing piece needed to bring
containers to the mainstream.

Administrators and developers are interested in containers for two major reasons.

It’s worth mentioning that the container ecosystem, even for companies like Docker, remains a
work in progress. For example, a fundamental standard for container images is under
development. In June 2015, 21 companies formed the Open Container Initiative6 to address
this issue. Docker is donating its container format and runtime, runC, to the OCI to serve as the
cornerstone of this new e�ort . As container technology matures, a fundamental goal for
ongoing OpenStack development is to ensure that tools like Docker, Kubernetes and Mesos
work well within OpenStack. OpenStack, as a fundamental framework for IT infrastructure,
remains hardware and software agnostic so it can manage everything.

1. Application containers, compared with virtual machines, are very lightweight –
minimizing compute, storage, and bandwidth requirements. Since multiple containers
leverage the same kernel (Linux today, with Windows soon), containers can be smaller
and may require less processing, RAM, and storage than virtual machines because they
can be used without any hardware virtualization. They allow more dynamic systems
than virtual machines allow, because the chunks of data that need to be moved
around to use containers are so much smaller than virtual machine images.

2. The other advantage is that containers are portable, e�ectively running on any
hardware that runs the relevant operating system. That means developers can run a
container on a workstation, create an app in that container, save it in a container image,
and then deploy the app on any virtual or physical server running the same operating
system - and expect the application to work.

www.openstack.org

stack®open

Containers o�er deployment speed advantages over virtual machines because they’re smaller
megabytes instead of gigabytes. Typical application containers can be started in seconds,
whereas virtual machines often take minutes. Containers also allow direct access to device drivers
through the kernel, which makes I/O operations faster than with a hypervisor approach where
those operations must be virtualized. Even in environments with hundreds or thousands of
containers, this speed advantage can be signi�cant and contributes to overall responsiveness new
workloads can be brought online quickly and make boot storms become a thing of the past.

Containers create a proliferation of compute units, and without robust monitoring, management,
and orchestration, IT administrators will be coping with “container sprawl”, where containers are
left running, mislocated or forgotten. As a result, some third-party ecosystem tools have become
so synonymous with containers that they need to be mentioned, in the context of OpenStack.

The three most common are Docker Swarm, Kubernetes, and Mesos.

Docker2 popularized the idea of the container image. They provide a straightforward way for
developers to package an application and its dependencies in a container image that can run on
any modern Linux, and soon Windows, server. Docker also has additional tools for container
deployments, including Docker Machine, Docker Compose, and Docker Swarm. At the highest
level, Machine makes it easy to spin up Docker hosts, Compose makes it easier to deploy complex
distributed apps on Docker, and Swarm enables native clustering for Docker.

Kubernetes3 (originally by Google, now contributes to the Cloud Native Computing Foundation4)
is an open source orchestration system for Docker containers. It handles scheduling onto nodes in
a compute cluster and actively manages workloads to ensure that their state matches the user's’
declared intentions.

Apache Mesos5 can be used to deploy and manage application containers in large-scale clustered
environments. It allows developers to conceptualize their applications as jobs and tasks. Mesos, in
combination with a job system like Marathon, takes care of scheduling and running jobs and tasks.

OpenStack refers to these three options as Container Orchestration Engines (COE). All three of
these COE systems are supported in OpenStack Magnum, the containers service for OpenStack,
that allows your choice of COE to be automatically provisioned in a collection of compute
instances where your containers are run.

04

Today, containers are being used for two major purposes.

An entire system – operating system, applications, services, etc. – can exist inside a container.
These are called, appropriately enough, system or OS containers. System containers’ use cases
are e�ectively similar to those of virtual machines.

However, application containers are di�erent. Containers are a way of bundling and running
applications in a more portable way. They can be used to break down and isolate parts of
applications, called microservices, which allow for more granular scaling, simpli�ed management,
superior security con�gurations, and solving a class of problems previously addressed with
con�guration management (CM) tools. They are not a replacement for virtualization or CM.

A developer can put an application or service inside a container, along with the runtime requisites
and services the application requires, without having to include a full operating system. This
allows container images to be small, usually just a few megabytes in size compared to virtual
machine images which can be orders of magnitude larger.

Containers have been around for years, but they didn’t become popular until various vendors
started de�ning container images. Conceptually a container image can be thought of as a snapshot
of a container's �lesystem that can be stored on disk. The container �lesystem is arranged in layers,
like how a series of commits are arranged in a git repository. This allows the container image to
indicate which parent image it is derived from, allowing it to be very small by comparison. All it
needs are the bits that are di�erent from its parent. This is why they can be so much smaller.
Container images allow tools like Docker to simplify container creation and deployment, using a
single command to launch the app with all its requisites. The concept of the container image, and
the layering features associated with that concept, was really the missing piece needed to bring
containers to the mainstream.

Administrators and developers are interested in containers for two major reasons.

It’s worth mentioning that the container ecosystem, even for companies like Docker, remains a
work in progress. For example, a fundamental standard for container images is under
development. In June 2015, 21 companies formed the Open Container Initiative6 to address
this issue. Docker is donating its container format and runtime, runC, to the OCI to serve as the
cornerstone of this new e�ort . As container technology matures, a fundamental goal for
ongoing OpenStack development is to ensure that tools like Docker, Kubernetes and Mesos
work well within OpenStack. OpenStack, as a fundamental framework for IT infrastructure,
remains hardware and software agnostic so it can manage everything.

2 https://opensource.com/resources/whatdocker
3 http://kubernetes.io/
4 http://www.linuxfoundation.org/newsmedia/announcements/2015/07/newcloudnativecomputingfoundationdrivealignmentamong
5 http://opensource.com/business/14/9/opensourcedatacentercomputingapachemesos

www.openstack.org

stack®open

Containers o�er deployment speed advantages over virtual machines because they’re smaller
megabytes instead of gigabytes. Typical application containers can be started in seconds,
whereas virtual machines often take minutes. Containers also allow direct access to device drivers
through the kernel, which makes I/O operations faster than with a hypervisor approach where
those operations must be virtualized. Even in environments with hundreds or thousands of
containers, this speed advantage can be signi�cant and contributes to overall responsiveness new
workloads can be brought online quickly and make boot storms become a thing of the past.

Containers create a proliferation of compute units, and without robust monitoring, management,
and orchestration, IT administrators will be coping with “container sprawl”, where containers are
left running, mislocated or forgotten. As a result, some third-party ecosystem tools have become
so synonymous with containers that they need to be mentioned, in the context of OpenStack.

The three most common are Docker Swarm, Kubernetes, and Mesos.

Docker2 popularized the idea of the container image. They provide a straightforward way for
developers to package an application and its dependencies in a container image that can run on
any modern Linux, and soon Windows, server. Docker also has additional tools for container
deployments, including Docker Machine, Docker Compose, and Docker Swarm. At the highest
level, Machine makes it easy to spin up Docker hosts, Compose makes it easier to deploy complex
distributed apps on Docker, and Swarm enables native clustering for Docker.

Kubernetes3 (originally by Google, now contributes to the Cloud Native Computing Foundation4)
is an open source orchestration system for Docker containers. It handles scheduling onto nodes in
a compute cluster and actively manages workloads to ensure that their state matches the user's’
declared intentions.

Apache Mesos5 can be used to deploy and manage application containers in large-scale clustered
environments. It allows developers to conceptualize their applications as jobs and tasks. Mesos, in
combination with a job system like Marathon, takes care of scheduling and running jobs and tasks.

OpenStack refers to these three options as Container Orchestration Engines (COE). All three of
these COE systems are supported in OpenStack Magnum, the containers service for OpenStack,
that allows your choice of COE to be automatically provisioned in a collection of compute
instances where your containers are run.

05

Today, containers are being used for two major purposes.

An entire system – operating system, applications, services, etc. – can exist inside a container.
These are called, appropriately enough, system or OS containers. System containers’ use cases
are e�ectively similar to those of virtual machines.

However, application containers are di�erent. Containers are a way of bundling and running
applications in a more portable way. They can be used to break down and isolate parts of
applications, called microservices, which allow for more granular scaling, simpli�ed management,
superior security con�gurations, and solving a class of problems previously addressed with
con�guration management (CM) tools. They are not a replacement for virtualization or CM.

A developer can put an application or service inside a container, along with the runtime requisites
and services the application requires, without having to include a full operating system. This
allows container images to be small, usually just a few megabytes in size compared to virtual
machine images which can be orders of magnitude larger.

Containers have been around for years, but they didn’t become popular until various vendors
started de�ning container images. Conceptually a container image can be thought of as a snapshot
of a container's �lesystem that can be stored on disk. The container �lesystem is arranged in layers,
like how a series of commits are arranged in a git repository. This allows the container image to
indicate which parent image it is derived from, allowing it to be very small by comparison. All it
needs are the bits that are di�erent from its parent. This is why they can be so much smaller.
Container images allow tools like Docker to simplify container creation and deployment, using a
single command to launch the app with all its requisites. The concept of the container image, and
the layering features associated with that concept, was really the missing piece needed to bring
containers to the mainstream.

Administrators and developers are interested in containers for two major reasons.

It’s worth mentioning that the container ecosystem, even for companies like Docker, remains a
work in progress. For example, a fundamental standard for container images is under
development. In June 2015, 21 companies formed the Open Container Initiative6 to address
this issue. Docker is donating its container format and runtime, runC, to the OCI to serve as the
cornerstone of this new e�ort . As container technology matures, a fundamental goal for
ongoing OpenStack development is to ensure that tools like Docker, Kubernetes and Mesos
work well within OpenStack. OpenStack, as a fundamental framework for IT infrastructure,
remains hardware and software agnostic so it can manage everything.

6 https://www.opencontainers.org/

www.openstack.org

Value of Containers Within an OpenStack Infrastructure
Cloud infrastructure provides a complete data center management solution in which containers,
or hypervisors for that matter, are only part of a much bigger system. OpenStack includes
multi-tenant security and isolation, management and monitoring, storage and networking and
more. These services are needed for any cloud / data center management regardless of whether
containers, virtual machines or bare metal servers are being used.

Containers are a complement to existing technology that bring a new set of bene�ts. OpenStack
enables organizations to select and use the right tool for the job. OpenStack supports containers
on bare metal or virtual machines. Operators must be aware that containers don’t have the same
security isolation capabilities as virtual machines, which means that containers can not be
viewed as a direct substitute for virtual machines. As an example, service providers often run
containers in VMs in order to provide robust protection of one tenant’s processes from poorly
behaved or malicious code in other containers7. Another approach is to use a bay in OpenStack
Magnum to arrange a group of virtual machines or bare metal (Ironic) instances that are only
used by one tenant to address this risk. OpenStack supports all of these con�gurations in the role
of the overall data center manager - virtual machines deliver compute resources and containers
aid application deployment and management. For many organizations, containers on OpenStack
enable additional �exibility and deployment agility without having to spin up a separate
container-only infrastructure.

Organizations could use containers for the following reasons:

• Containers provide deterministic software packaging and �t nicely with an immutable
infrastructure model.

• Containers are excellent for encapsulation of microservices.
• For portability of containers on top of OpenStack virtual machines as well as bare metal

servers (Ironic) using a single, lightweight image.

One of the bene�ts of using an orchestration framework with containers, is that it can allow
switching between OpenStack or bare metal environments at any given point in time, abstracting
the application away from the infrastructure. In this way, either option can be selected by
pointing the orchestration engine to the target environment of choice. OpenStack Orchestration
Service (Heat) provides support for Docker orchestration starting from the Icehouse release.
With Google’s recent sponsorship of the OpenStack Foundation8 and developer contributions,
the Kubernetes orchestration engine is integrated with OpenStack as well. In fact, with OpenStack
Magnum containers-as-a-service, the default bay type is a Kubernetes bay.

7 https://cloud.google.com/compute/docs/containers/container_vms
8 http://www.openstack.org/blog/2015/07/google-bringing-container-expertise-to-openstack/

stack®open

06

www.openstack.org

stack®open

What are the use cases in OpenStack?
Since complex mission critical software systems have about a �ve-year maturation cycle, it’s still
early to determine all the opportunities for containers to provide bene�t. Having said that, many
organizations are using containers because containers are a continuation of the “doing more
with less” trend that began with virtualization. Organizations of all sizes that use containers
agree on several use cases where bene�ts are speci�c and measurable.

According to a survey by ZDNet9, respondents perceived bene�ts from the ability to deploy
applications faster (54 percent); reduced e�ort to deploy applications (40 percent); streamlined
development and testing (38 percent); reduced application deployment costs (31 percent); and
server consolidation (25 percent).

Development is a very clearcut opportunity for container technology. Essentially, a developer
can create an application container, containing the app, runtimes, libraries, etc., and move it to
any machine - physical or virtual. Since containers are truly stateless, developers don’t have to
worry about compatibility and containers can be used as easily provisioned, immediately
disposable development environments on any kind of IT infrastructure. This speeds up ramp
time for new developers as well as increasing overall development productivity.

In build/continuous integration environments, containers enable organizations to rapidly test
more system permutations as well as deliver increased parallelism, increasing innovation and
feature velocity.

For quality assurance, containers enable better black box testing as well as help organizations
shift from governance to compliance.

Because containers can be stateless, they also contribute to the shift toward immutable
infrastructure. Thousands of containers can be created using a single consistent container
image. Changes to the image can immediately be layered upon all the container instances.
Old container images can be discarded as needed.

Stateless containers also facilitate high availability. Containers can be run on di�erent
underlying hardware, so if one host goes down, administrators can route tra�c to live
application containers running elsewhere.

07

9 http://www.zdnet.com/article/customers-reporting-interest-in-cloud-containers-linux-and-openstack-for-2015/

There are noticeable cost advantages as well. Essentially, administrators can create and destroy
container resources in their data center without worrying about costs. With typical data center
utilization at 30%, it is easy to bump up that number by deploying additional containers on the
same hardware. Also, because containers are small and launch quickly, clusters can scale up and
down in more a�ordable and granular ways, simply by running or stopping additional containers.

To that point, containers also enable density improvements. Instead of running a dozen or two
dozen virtual machines per server, it’s possible to run hundreds of application containers per server.
There are a few implications to this possibility. One is that enterprises might be able to make use of
older, or lower performing hardware – thereby reducing costs. Another implication is that an
enterprise might be able to use fewer servers, or smaller cloud instances, in order to accomplish
their objectives.

There are a number of sophisticated users who have started to use containers at scale, in
production. Rackspace is using OpenStack to provision containers at scale in production products,
including Rackspace Private Cloud, Rackspace Public Cloud, and Rackspace Cloud Databases.
Pantheon, a website management platform serving over 100,000 Drupal and WordPress sites, is
powered by 1,000,000+ containers on virtual machines and bare metal, provisioned in exactly the
same way with their OpenStack-based CLI and RESTful API.

www.openstack.org

stack®

What are the use cases in OpenStack?
Since complex mission critical software systems have about a �ve-year maturation cycle, it’s still
early to determine all the opportunities for containers to provide bene�t. Having said that, many
organizations are using containers because containers are a continuation of the “doing more
with less” trend that began with virtualization. Organizations of all sizes that use containers
agree on several use cases where bene�ts are speci�c and measurable.

According to a survey by ZDNet9, respondents perceived bene�ts from the ability to deploy
applications faster (54 percent); reduced e�ort to deploy applications (40 percent); streamlined
development and testing (38 percent); reduced application deployment costs (31 percent); and
server consolidation (25 percent).

Development is a very clearcut opportunity for container technology. Essentially, a developer
can create an application container, containing the app, runtimes, libraries, etc., and move it to
any machine - physical or virtual. Since containers are truly stateless, developers don’t have to
worry about compatibility and containers can be used as easily provisioned, immediately
disposable development environments on any kind of IT infrastructure. This speeds up ramp
time for new developers as well as increasing overall development productivity.

In build/continuous integration environments, containers enable organizations to rapidly test
more system permutations as well as deliver increased parallelism, increasing innovation and
feature velocity.

For quality assurance, containers enable better black box testing as well as help organizations
shift from governance to compliance.

Because containers can be stateless, they also contribute to the shift toward immutable
infrastructure. Thousands of containers can be created using a single consistent container
image. Changes to the image can immediately be layered upon all the container instances.
Old container images can be discarded as needed.

Stateless containers also facilitate high availability. Containers can be run on di�erent
underlying hardware, so if one host goes down, administrators can route tra�c to live
application containers running elsewhere.

open

08

There are noticeable cost advantages as well. Essentially, administrators can create and destroy
container resources in their data center without worrying about costs. With typical data center
utilization at 30%, it is easy to bump up that number by deploying additional containers on the
same hardware. Also, because containers are small and launch quickly, clusters can scale up and
down in more a�ordable and granular ways, simply by running or stopping additional containers.

To that point, containers also enable density improvements. Instead of running a dozen or two
dozen virtual machines per server, it’s possible to run hundreds of application containers per server.
There are a few implications to this possibility. One is that enterprises might be able to make use of
older, or lower performing hardware – thereby reducing costs. Another implication is that an
enterprise might be able to use fewer servers, or smaller cloud instances, in order to accomplish
their objectives.

There are a number of sophisticated users who have started to use containers at scale, in
production. Rackspace is using OpenStack to provision containers at scale in production products,
including Rackspace Private Cloud, Rackspace Public Cloud, and Rackspace Cloud Databases.
Pantheon, a website management platform serving over 100,000 Drupal and WordPress sites, is
powered by 1,000,000+ containers on virtual machines and bare metal, provisioned in exactly the
same way with their OpenStack-based CLI and RESTful API.

www.openstack.org

stack®open

09

Containers with OpenStack Today
OpenStack is arguably the leading cloud framework for adopting and adapting new technologies.
The community makes decisions on technology relevance and creates new projects to support
widespread adoption among OpenStack deployments. In 2014, the OpenStack community
decided that containers were an important technology to support and that decision has resulted
in several projects to ensure containers - and the third-party ecosystem around containers - will
be supported in OpenStack clouds.

OpenStack is undergoing a continuous evolution toward full-�edged container support. Today it
supports LXC and Virtuozzo system containers. Docker application containers and Docker Swarm,
Kubernetes and Mesos container orchestration are available with the Liberty release of Magnum10.

Building a Container Hosting Environment with OpenStack Compute

OpenStack Compute (Nova) manages the compute resources for an OpenStack cloud. Those
resources may be virtual machines (VMs) from hypervisors such as KVM, Xen, VMware® vSphere®
and Hyper-V® or from container technology like LXC and OpenVZ (Virtuozzo)11. The latter system
container technologies are supported by Nova via libvirt; libvirt is an open source API, daemon
and management tool for managing platform virtualization available on most Linux distributions.

These are suitable for use cases with the requirement to treat a container like a lightweight
virtual machine, allowing use in a similar way to on-demand virtual machines. The created system
container environment would typically be a network-connected server, with one or more
applications, an IP address and some form of remote access (ssh). Containers are usually created
from templates or images that determine the structure and contents of the container. System
containers are useful to run a �eet of identical or di�erent �avors of distros with little overhead.
Example uses are a service provider that needs maximum density to stay pro�table, or a user that
wants to get bare metal performance and still needs to use some form of virtualization for
manageability.

Rackspace Private Cloud is using LXC containers in production for all Infrastructure components
of an OpenStack powered cloud, supporting Icehouse, Juno, and Kilo as production ready
releases. Instead of using a microservice model, as would be de�ned by the larger Docker
community, Rackspace has made the decision to use containers like disposable bare metal. They
have found that containers are amazing at providing scale within an OpenStack cloud and allows
deployers to better utilize resources.

10 http://lists.openstack.org/pipermail/openstackdev/2015March/058714.html
11 http://docs.openstack.org/developer/nova/supportmatrix.html

www.openstack.org

stack®open

10

Containers with OpenStack Tomorrow
The OpenStack community formed a Containers team in May 2014, with a clear vision for advancing
container technology in OpenStack, and providing new services and tools on track with the latest
technological advances. The objective is to allow users to create and manage containers with an
experience consistent with what they expect from using the Nova service to get virtual machines. The
aim is to o�er developers a single set of compatible APIs to manage their workloads, whether those run
on containers, virtual machines or bare metal. Overall, OpenStack aims at providing the infrastructure
framework for the next ten to twenty years. As new technologies like containers emerge and become
relevant, the community will work on supporting them, taking a consistent and open approach.

The top three areas of focus are:
 • Provide comprehensive support for running containerized workloads on OpenStack.

• Simplify the setup needed to run a production multi-tenant container service.
• O�er modular choice to OpenStack cloud operators who have not yet established a

de�nitive containers strategy.
There are multiple OpenStack projects leveraging container technology to make
OpenStack better: Magnum, Kolla and Murano. Basically:

• Magnum is designed to o�er container speci�c APIs for multi-tenant containers-as-a-service
with OpenStack. Figure 2 shows how Magnum integrates with other OpenStack components.

• Kolla is designed to o�er a dynamic OpenStack control plane where each OpenStack service
runs in a Docker container.

• Murano is an application catalog solution that allows for packaged applications to be deployed
on OpenStack, including single-tenant installations of Kubernetes.

With the Liberty release, Magnum and Murano will be production-ready.

Figure 2: OpenStack Container-as-a-Service Support Architecture

Figure 3: Magnum Architecture

www.openstack.org

stack®open
Magnum leverages Docker Swarm, Kubernetes, and Mesos as components, but di�ers in that
Magnum also o�ers an asynchronous OpenStack API that uses OpenStack Identity Service
(Keystone), and includes a complete multi-tenancy implementation. It does not perform
orchestration internally, and instead relies on Heat.

The same identity credentials used to create IaaS resources can be used to run containerized
applications using Magnum, via built-in integration with Keystone. Some examples of
advanced features available with Magnum are the ability to scale an application to a speci�ed
number of instances, to cause your application to automatically re-spawn an instance in the
event of a failure, and to pack applications together more tightly than would be possible using
virtual machines.

The second release of Magnum (Kilo-2) is available for download12. It includes signi�cant test
code coverage, multi-tenancy support, scalable bays, support for CoreOS Nodes, 8 bit character
support, and 61 other enhancements, bug �xes, and technical debt elimination.

Magnum is at the point today, prior to Liberty, where OpenStack-based public cloud providers
can start to leverage it. These users are contributing to Magnum, making containers accessible
for individual IT departments later this year and beyond. Experienced users assert it is very
reliable and really helps to run an app in an immutable infrastructure.

Magnum Networking
Magnum leverages OpenStack Networking (Neutron) capability when creating bays. This
allows each node in a bay to communicate with the other nodes. If the Kubernetes bay type is
used, a Flannel overlay network is used which allows Kubernetes to assign IP addresses to
containers in the bay while allowing multihost communication between containers. Work is
currently underway to leverage new networking features from the Docker community
(libnetwork) to provide a native client experience while leveraging OpenStack networking, and
o�er a consistent experience between containers running outside of OpenStack cloud
environments. This capability is expected in the OpenStack Mitaka release timeframe.

Magnum Security and Multi-tenancy
Resources such as containers, services, pods, bays, etc. started by Magnum can only be viewed
and accessed by users of the tenant that created them. Bays are not shared, meaning that
containers will not run on the same kernel as neighboring tenants. This is a key security feature
that allows containers belonging to the same tenant to be tightly packed within the same pods
and bays, but runs separate kernels (in separate Nova Instances) between di�erent tenants.
This is di�erent than using a system like Kubernetes without Magnum, which is intended to be
used only by a single tenant, and leaves the security isolation design up to the implementer.

11

Magnum
Magnum is an OpenStack API service that adds multi-tenant integration of prevailing container
orchestration software for use in OpenStack clouds. Magnum allows multiple container
technologies in OpenStack to be used concurrently, on a variety of Nova instance types.
Magnum makes orchestration engines, including Docker Swarm, Kubernetes, and Mesos,
available through �rst class resources in OpenStack. Magnum provides container speci�c
features that are beyond the scope of Nova's API, and implements its own API to surface these
features in a way that is consistent with other OpenStack services. It also allows for native APIs
and native tools to be used directly, so that container tooling (like the Docker CLI client) does
not need to be redesigned to work with OpenStack.

Containers started by Magnum are run on top of an OpenStack resource called a bay. Bays are
collections of Nova instances that are created using Heat. Magnum uses Heat to orchestrate an
OS image which contains Docker Swarm, Kubernetes or Mesos, and runs that image in either
virtual machines or bare metal in a cluster con�guration. Magnum simpli�es the required
integration with OpenStack, and allows cloud users who can already launch cloud resources
such as Nova instances, OpenStack Block Storage (Cinder) volumes, OpenStack Database
Service (Trove) databases, etc. to create bays where they can start application containers.

Kolla comes out of the box as a highly opinionated deployment system meant to work with the
con�guration of four pieces of information. For more experienced operators, Kolla can be
completely customized by con�guration augmentation, enabling an operator to customize their
deployment to suit their needs as their experience with OpenStack increases with the execution
of one operation.

Kolla’s lead container distribution is CentOS but containers are built and tested for CentOS,
Fedora, Oracle Linux, Red Hat Enterperise Linux, and Ubuntu container runtimes in both source
and distro packaging models. Deployment occurs to an operating system that matches the
container run-time operating system to preserve system call, IOCTL, and netlink compatibility.
Deployment to micro-operating systems such as CoreOS, Fedora Atomic, and Red Hat Enterprise
Linux Atomic are planned for the future.

Kolla implements Ansible deployment of the following infrastructure and basic services with a
high availability model using redundancy to protect against faults:

• RabbitMQ
• MariaDB with Galera Replication
• Keepalived
• HAProxy
• Keystone
• Glance
• Magnum

Kolla is ready for evaluation but not deployment by operators. A deployment-ready Kolla is
anxiously awaited by operators worldwide.

For more information or to get involved, please visit: https://wiki.openstack.org/wiki/Kolla
or meet the developers and users on #kolla on Freenode IRC.

Murano
Murano is an OpenStack project that provides an application catalog for app developers and
cloud administrators to publish cloud-ready applications in a browsable, categorized repository
available within OpenStack Dashboard (Horizon); and for administrators to obtain additional apps
easily from public repositories such as the OpenStack Community App Catalog
(apps.openstack.org), Google Container Repository, and Docker Hub/Registry. Murano provides
developers and operators with the ability to control full application lifecycles, while allowing users -
including inexperienced ones - a simple, self-service way of deploying reliable application
environments with the push of a button.

Social-as-a-Service company Lithium has a VM-based application running on an OpenStack
private cloud today. They are working to transition to a sleeker, container-based model, using
Docker and Kubernetes container orchestration and clustering. Containers make sense for Lithium
because they enable development, testing and deployment on a single, simple and standardized
runtime platform that’s easily and quickly deployed and inherently lightweight: important as the
scale and performance requirements of Lithium’s platform continue growing, and as
formerly-stateful aspects of their architecture evolve towards stateless micro-services. Kubernetes
works for them for similar reasons. And, it o�ers a common scheduler across Lithium’s private and
public clouds, letting them build out a more transparently-integrated hybrid solution on multiple
IaaSs - OpenStack, AWS, and Google Compute Engine. In the future, Lithium wants to explore
bringing OpenStack APIs up into the Kubernetes/Docker layer to create fullstack DevOps tooling.

For more information or to get involved, please visit:
https://wiki.openstack.org/wiki/Murano

Using Magnum provides the same level of security isolation as Nova provides when running
Virtual Machines belonging to di�erent tenants on the same compute nodes.

If Nova is currently trusted to isolate workloads between multiple tenants in a cloud using a
hypervisor, then Magnum can also be trusted to provide equivalent isolation of containers
between multiple tenants. This is because Magnum uses Nova instances to compose bays,
and does not share bays between di�erent tenants.

For more information or to get involved, please visit: https://wiki.openstack.org/wiki/Magnum

Kolla
Deploying and upgrading OpenStack has always been a complex task. With the advent of the
core and projects structure of the OpenStack software13, there is no longer an integrated
OpenStack release. Projects can be approved and released on their own cadence, with most
projects still opting to do releases at the end of the 6-month development cycles. Operators will
be able to select from a number of projects to custom-build their deployment. This introduces
more �exibility and choice but also complexity in deployment and ongoing operations.

Kolla is a new approach to deploying OpenStack within containers that results in new fast, reliable
and composable building blocks. Kolla simpli�es deployment and ongoing operations by
packaging each service, for the most part, as a micro-service in a Docker container.

Containerized micro-services and Ansible orchestration allows operators to upgrade a service by
building a new Docker container and redeploying the system. Di�erent versions and package
mechanisms such as distribution packaging, RDO, and from-source can be supported individually.
Deploying OpenStack with Kolla does not recon�gure anything else in the deployed operating
system, unlike other con�guration management tools, lowering risk. And Kolla containers are easy
to create.

Kolla provides immutability, because the only things that change are the con�guration �les
loaded into a container and how those con�guration changes modify the behavior of the
OpenStack services. This turns OpenStack from an imperative system to a declarative system;
either the container runs or doesn’t. Kolla is implemented with data containers that can be
mounted on the host operating system. For example, databases, OpenStack Image Service
(Glance) information, Nova compute VMs and other persistent data can be stored in data
containers which can be backed up and restored individually, again lowering risk and extending
immutability throughout the OpenStack infrastructure.

Murano thus enables management and self-service delivery both of conventional application
stacks and container oriented environments and PaaS solutions - including Kubernetes, Mesos,
Cloud Foundry, and Swarm, on OpenStack. It can coordinate the use of all the Docker drivers within
the context of an application through Heat or Python plugins. App and services developers use
containers to run services using the container management tools of their choice, and Murano then
acts as a lightweight abstraction so that the developer can provide guidance to the operator about
how to handle app/service lifecycle actions such as upgrade, scale-up/down, backup, and recover.

Murano is available today as OpenStack packages in Juno and Kilo. An organization’s cloud
Application Catalog can be populated by importing Murano packages from a local repository,
or from the OpenStack Community Application Catalog.

Murano environments may be as simple as a single VM or may be complex, multi-tier applications
with auto-scaling and self healing.

Because each application and service de�nition includes all of the information the system needs
for deployment, users will not have to work through various IT departments in order to provision a
cloud service, nor are users required to provide detailed IT speci�cations. They are only required to
provide business and organization requirements.

Installing third party services and applications can be di�cult in any environment, but the dynamic
nature of an OpenStack environment can make this problem worse. Murano is designed to solve
this problem by providing an additional integration layer between third-party components and
OpenStack infrastructure. This makes it possible to provide both
Infrastructure-as-a-Service and Platform-as-a-Service from a single control plane.

For users, the application catalog is a place to �nd and self-provision third-party applications and
services, integrate them into their environment, and track usage information and costs. The single
control plane becomes a single interface from which they can provision an entire fully-functional
cloud-based application environment.

From the third-party tool developer’s perspective, the application catalog provides a way to
publish applications and services, including deployment rules and requirements, suggested
con�guration, output parameters and billing rules. It will also provide a way to track billing and
usage information. In this way, these third party developers can enrich the OpenStack ecosystem
to make it more attractive for users, and users can get more out of their OpenStack clusters more
easily, fostering adoption of OpenStack itself.

www.openstack.org

stack®open
Magnum leverages Docker Swarm, Kubernetes, and Mesos as components, but di�ers in that
Magnum also o�ers an asynchronous OpenStack API that uses OpenStack Identity Service
(Keystone), and includes a complete multi-tenancy implementation. It does not perform
orchestration internally, and instead relies on Heat.

The same identity credentials used to create IaaS resources can be used to run containerized
applications using Magnum, via built-in integration with Keystone. Some examples of
advanced features available with Magnum are the ability to scale an application to a speci�ed
number of instances, to cause your application to automatically re-spawn an instance in the
event of a failure, and to pack applications together more tightly than would be possible using
virtual machines.

The second release of Magnum (Kilo-2) is available for download12. It includes signi�cant test
code coverage, multi-tenancy support, scalable bays, support for CoreOS Nodes, 8 bit character
support, and 61 other enhancements, bug �xes, and technical debt elimination.

Magnum is at the point today, prior to Liberty, where OpenStack-based public cloud providers
can start to leverage it. These users are contributing to Magnum, making containers accessible
for individual IT departments later this year and beyond. Experienced users assert it is very
reliable and really helps to run an app in an immutable infrastructure.

Magnum Networking
Magnum leverages OpenStack Networking (Neutron) capability when creating bays. This
allows each node in a bay to communicate with the other nodes. If the Kubernetes bay type is
used, a Flannel overlay network is used which allows Kubernetes to assign IP addresses to
containers in the bay while allowing multihost communication between containers. Work is
currently underway to leverage new networking features from the Docker community
(libnetwork) to provide a native client experience while leveraging OpenStack networking, and
o�er a consistent experience between containers running outside of OpenStack cloud
environments. This capability is expected in the OpenStack Mitaka release timeframe.

Magnum Security and Multi-tenancy
Resources such as containers, services, pods, bays, etc. started by Magnum can only be viewed
and accessed by users of the tenant that created them. Bays are not shared, meaning that
containers will not run on the same kernel as neighboring tenants. This is a key security feature
that allows containers belonging to the same tenant to be tightly packed within the same pods
and bays, but runs separate kernels (in separate Nova Instances) between di�erent tenants.
This is di�erent than using a system like Kubernetes without Magnum, which is intended to be
used only by a single tenant, and leaves the security isolation design up to the implementer.

12

Kolla comes out of the box as a highly opinionated deployment system meant to work with the
con�guration of four pieces of information. For more experienced operators, Kolla can be
completely customized by con�guration augmentation, enabling an operator to customize their
deployment to suit their needs as their experience with OpenStack increases with the execution
of one operation.

Kolla’s lead container distribution is CentOS but containers are built and tested for CentOS,
Fedora, Oracle Linux, Red Hat Enterperise Linux, and Ubuntu container runtimes in both source
and distro packaging models. Deployment occurs to an operating system that matches the
container run-time operating system to preserve system call, IOCTL, and netlink compatibility.
Deployment to micro-operating systems such as CoreOS, Fedora Atomic, and Red Hat Enterprise
Linux Atomic are planned for the future.

Kolla implements Ansible deployment of the following infrastructure and basic services with a
high availability model using redundancy to protect against faults:

• RabbitMQ
• MariaDB with Galera Replication
• Keepalived
• HAProxy
• Keystone
• Glance
• Magnum

Kolla is ready for evaluation but not deployment by operators. A deployment-ready Kolla is
anxiously awaited by operators worldwide.

For more information or to get involved, please visit: https://wiki.openstack.org/wiki/Kolla
or meet the developers and users on #kolla on Freenode IRC.

Murano
Murano is an OpenStack project that provides an application catalog for app developers and
cloud administrators to publish cloud-ready applications in a browsable, categorized repository
available within OpenStack Dashboard (Horizon); and for administrators to obtain additional apps
easily from public repositories such as the OpenStack Community App Catalog
(apps.openstack.org), Google Container Repository, and Docker Hub/Registry. Murano provides
developers and operators with the ability to control full application lifecycles, while allowing users -
including inexperienced ones - a simple, self-service way of deploying reliable application
environments with the push of a button.

Social-as-a-Service company Lithium has a VM-based application running on an OpenStack
private cloud today. They are working to transition to a sleeker, container-based model, using
Docker and Kubernetes container orchestration and clustering. Containers make sense for Lithium
because they enable development, testing and deployment on a single, simple and standardized
runtime platform that’s easily and quickly deployed and inherently lightweight: important as the
scale and performance requirements of Lithium’s platform continue growing, and as
formerly-stateful aspects of their architecture evolve towards stateless micro-services. Kubernetes
works for them for similar reasons. And, it o�ers a common scheduler across Lithium’s private and
public clouds, letting them build out a more transparently-integrated hybrid solution on multiple
IaaSs - OpenStack, AWS, and Google Compute Engine. In the future, Lithium wants to explore
bringing OpenStack APIs up into the Kubernetes/Docker layer to create fullstack DevOps tooling.

For more information or to get involved, please visit:
https://wiki.openstack.org/wiki/Murano

12 https://github.com/openstack/magnum/releases/tag/2015.1.0b2

Using Magnum provides the same level of security isolation as Nova provides when running
Virtual Machines belonging to di�erent tenants on the same compute nodes.

If Nova is currently trusted to isolate workloads between multiple tenants in a cloud using a
hypervisor, then Magnum can also be trusted to provide equivalent isolation of containers
between multiple tenants. This is because Magnum uses Nova instances to compose bays,
and does not share bays between di�erent tenants.

For more information or to get involved, please visit: https://wiki.openstack.org/wiki/Magnum

Kolla
Deploying and upgrading OpenStack has always been a complex task. With the advent of the
core and projects structure of the OpenStack software13, there is no longer an integrated
OpenStack release. Projects can be approved and released on their own cadence, with most
projects still opting to do releases at the end of the 6-month development cycles. Operators will
be able to select from a number of projects to custom-build their deployment. This introduces
more �exibility and choice but also complexity in deployment and ongoing operations.

Kolla is a new approach to deploying OpenStack within containers that results in new fast, reliable
and composable building blocks. Kolla simpli�es deployment and ongoing operations by
packaging each service, for the most part, as a micro-service in a Docker container.

Containerized micro-services and Ansible orchestration allows operators to upgrade a service by
building a new Docker container and redeploying the system. Di�erent versions and package
mechanisms such as distribution packaging, RDO, and from-source can be supported individually.
Deploying OpenStack with Kolla does not recon�gure anything else in the deployed operating
system, unlike other con�guration management tools, lowering risk. And Kolla containers are easy
to create.

Kolla provides immutability, because the only things that change are the con�guration �les
loaded into a container and how those con�guration changes modify the behavior of the
OpenStack services. This turns OpenStack from an imperative system to a declarative system;
either the container runs or doesn’t. Kolla is implemented with data containers that can be
mounted on the host operating system. For example, databases, OpenStack Image Service
(Glance) information, Nova compute VMs and other persistent data can be stored in data
containers which can be backed up and restored individually, again lowering risk and extending
immutability throughout the OpenStack infrastructure.

Murano thus enables management and self-service delivery both of conventional application
stacks and container oriented environments and PaaS solutions - including Kubernetes, Mesos,
Cloud Foundry, and Swarm, on OpenStack. It can coordinate the use of all the Docker drivers within
the context of an application through Heat or Python plugins. App and services developers use
containers to run services using the container management tools of their choice, and Murano then
acts as a lightweight abstraction so that the developer can provide guidance to the operator about
how to handle app/service lifecycle actions such as upgrade, scale-up/down, backup, and recover.

Murano is available today as OpenStack packages in Juno and Kilo. An organization’s cloud
Application Catalog can be populated by importing Murano packages from a local repository,
or from the OpenStack Community Application Catalog.

Murano environments may be as simple as a single VM or may be complex, multi-tier applications
with auto-scaling and self healing.

Because each application and service de�nition includes all of the information the system needs
for deployment, users will not have to work through various IT departments in order to provision a
cloud service, nor are users required to provide detailed IT speci�cations. They are only required to
provide business and organization requirements.

Installing third party services and applications can be di�cult in any environment, but the dynamic
nature of an OpenStack environment can make this problem worse. Murano is designed to solve
this problem by providing an additional integration layer between third-party components and
OpenStack infrastructure. This makes it possible to provide both
Infrastructure-as-a-Service and Platform-as-a-Service from a single control plane.

For users, the application catalog is a place to �nd and self-provision third-party applications and
services, integrate them into their environment, and track usage information and costs. The single
control plane becomes a single interface from which they can provision an entire fully-functional
cloud-based application environment.

From the third-party tool developer’s perspective, the application catalog provides a way to
publish applications and services, including deployment rules and requirements, suggested
con�guration, output parameters and billing rules. It will also provide a way to track billing and
usage information. In this way, these third party developers can enrich the OpenStack ecosystem
to make it more attractive for users, and users can get more out of their OpenStack clusters more
easily, fostering adoption of OpenStack itself.

www.openstack.org

stack
Magnum leverages Docker Swarm, Kubernetes, and Mesos as components, but di�ers in that
Magnum also o�ers an asynchronous OpenStack API that uses OpenStack Identity Service
(Keystone), and includes a complete multi-tenancy implementation. It does not perform
orchestration internally, and instead relies on Heat.

The same identity credentials used to create IaaS resources can be used to run containerized
applications using Magnum, via built-in integration with Keystone. Some examples of
advanced features available with Magnum are the ability to scale an application to a speci�ed
number of instances, to cause your application to automatically re-spawn an instance in the
event of a failure, and to pack applications together more tightly than would be possible using
virtual machines.

The second release of Magnum (Kilo-2) is available for download12. It includes signi�cant test
code coverage, multi-tenancy support, scalable bays, support for CoreOS Nodes, 8 bit character
support, and 61 other enhancements, bug �xes, and technical debt elimination.

Magnum is at the point today, prior to Liberty, where OpenStack-based public cloud providers
can start to leverage it. These users are contributing to Magnum, making containers accessible
for individual IT departments later this year and beyond. Experienced users assert it is very
reliable and really helps to run an app in an immutable infrastructure.

Magnum Networking
Magnum leverages OpenStack Networking (Neutron) capability when creating bays. This
allows each node in a bay to communicate with the other nodes. If the Kubernetes bay type is
used, a Flannel overlay network is used which allows Kubernetes to assign IP addresses to
containers in the bay while allowing multihost communication between containers. Work is
currently underway to leverage new networking features from the Docker community
(libnetwork) to provide a native client experience while leveraging OpenStack networking, and
o�er a consistent experience between containers running outside of OpenStack cloud
environments. This capability is expected in the OpenStack Mitaka release timeframe.

Magnum Security and Multi-tenancy
Resources such as containers, services, pods, bays, etc. started by Magnum can only be viewed
and accessed by users of the tenant that created them. Bays are not shared, meaning that
containers will not run on the same kernel as neighboring tenants. This is a key security feature
that allows containers belonging to the same tenant to be tightly packed within the same pods
and bays, but runs separate kernels (in separate Nova Instances) between di�erent tenants.
This is di�erent than using a system like Kubernetes without Magnum, which is intended to be
used only by a single tenant, and leaves the security isolation design up to the implementer.

®open

13

Kolla comes out of the box as a highly opinionated deployment system meant to work with the
con�guration of four pieces of information. For more experienced operators, Kolla can be
completely customized by con�guration augmentation, enabling an operator to customize their
deployment to suit their needs as their experience with OpenStack increases with the execution
of one operation.

Kolla’s lead container distribution is CentOS but containers are built and tested for CentOS,
Fedora, Oracle Linux, Red Hat Enterperise Linux, and Ubuntu container runtimes in both source
and distro packaging models. Deployment occurs to an operating system that matches the
container run-time operating system to preserve system call, IOCTL, and netlink compatibility.
Deployment to micro-operating systems such as CoreOS, Fedora Atomic, and Red Hat Enterprise
Linux Atomic are planned for the future.

Kolla implements Ansible deployment of the following infrastructure and basic services with a
high availability model using redundancy to protect against faults:

• RabbitMQ
• MariaDB with Galera Replication
• Keepalived
• HAProxy
• Keystone
• Glance
• Magnum

Kolla is ready for evaluation but not deployment by operators. A deployment-ready Kolla is
anxiously awaited by operators worldwide.

For more information or to get involved, please visit: https://wiki.openstack.org/wiki/Kolla
or meet the developers and users on #kolla on Freenode IRC.

Murano
Murano is an OpenStack project that provides an application catalog for app developers and
cloud administrators to publish cloud-ready applications in a browsable, categorized repository
available within OpenStack Dashboard (Horizon); and for administrators to obtain additional apps
easily from public repositories such as the OpenStack Community App Catalog
(apps.openstack.org), Google Container Repository, and Docker Hub/Registry. Murano provides
developers and operators with the ability to control full application lifecycles, while allowing users -
including inexperienced ones - a simple, self-service way of deploying reliable application
environments with the push of a button.

Social-as-a-Service company Lithium has a VM-based application running on an OpenStack
private cloud today. They are working to transition to a sleeker, container-based model, using
Docker and Kubernetes container orchestration and clustering. Containers make sense for Lithium
because they enable development, testing and deployment on a single, simple and standardized
runtime platform that’s easily and quickly deployed and inherently lightweight: important as the
scale and performance requirements of Lithium’s platform continue growing, and as
formerly-stateful aspects of their architecture evolve towards stateless micro-services. Kubernetes
works for them for similar reasons. And, it o�ers a common scheduler across Lithium’s private and
public clouds, letting them build out a more transparently-integrated hybrid solution on multiple
IaaSs - OpenStack, AWS, and Google Compute Engine. In the future, Lithium wants to explore
bringing OpenStack APIs up into the Kubernetes/Docker layer to create fullstack DevOps tooling.

For more information or to get involved, please visit:
https://wiki.openstack.org/wiki/Murano

Using Magnum provides the same level of security isolation as Nova provides when running
Virtual Machines belonging to di�erent tenants on the same compute nodes.

If Nova is currently trusted to isolate workloads between multiple tenants in a cloud using a
hypervisor, then Magnum can also be trusted to provide equivalent isolation of containers
between multiple tenants. This is because Magnum uses Nova instances to compose bays,
and does not share bays between di�erent tenants.

For more information or to get involved, please visit: https://wiki.openstack.org/wiki/Magnum

Kolla
Deploying and upgrading OpenStack has always been a complex task. With the advent of the
core and projects structure of the OpenStack software13, there is no longer an integrated
OpenStack release. Projects can be approved and released on their own cadence, with most
projects still opting to do releases at the end of the 6-month development cycles. Operators will
be able to select from a number of projects to custom-build their deployment. This introduces
more �exibility and choice but also complexity in deployment and ongoing operations.

Kolla is a new approach to deploying OpenStack within containers that results in new fast, reliable
and composable building blocks. Kolla simpli�es deployment and ongoing operations by
packaging each service, for the most part, as a micro-service in a Docker container.

Containerized micro-services and Ansible orchestration allows operators to upgrade a service by
building a new Docker container and redeploying the system. Di�erent versions and package
mechanisms such as distribution packaging, RDO, and from-source can be supported individually.
Deploying OpenStack with Kolla does not recon�gure anything else in the deployed operating
system, unlike other con�guration management tools, lowering risk. And Kolla containers are easy
to create.

Kolla provides immutability, because the only things that change are the con�guration �les
loaded into a container and how those con�guration changes modify the behavior of the
OpenStack services. This turns OpenStack from an imperative system to a declarative system;
either the container runs or doesn’t. Kolla is implemented with data containers that can be
mounted on the host operating system. For example, databases, OpenStack Image Service
(Glance) information, Nova compute VMs and other persistent data can be stored in data
containers which can be backed up and restored individually, again lowering risk and extending
immutability throughout the OpenStack infrastructure.

13 https://www.openstack.org/blog/2015/02/tc-update-project-reform-progress/

Murano thus enables management and self-service delivery both of conventional application
stacks and container oriented environments and PaaS solutions - including Kubernetes, Mesos,
Cloud Foundry, and Swarm, on OpenStack. It can coordinate the use of all the Docker drivers within
the context of an application through Heat or Python plugins. App and services developers use
containers to run services using the container management tools of their choice, and Murano then
acts as a lightweight abstraction so that the developer can provide guidance to the operator about
how to handle app/service lifecycle actions such as upgrade, scale-up/down, backup, and recover.

Murano is available today as OpenStack packages in Juno and Kilo. An organization’s cloud
Application Catalog can be populated by importing Murano packages from a local repository,
or from the OpenStack Community Application Catalog.

Murano environments may be as simple as a single VM or may be complex, multi-tier applications
with auto-scaling and self healing.

Because each application and service de�nition includes all of the information the system needs
for deployment, users will not have to work through various IT departments in order to provision a
cloud service, nor are users required to provide detailed IT speci�cations. They are only required to
provide business and organization requirements.

Installing third party services and applications can be di�cult in any environment, but the dynamic
nature of an OpenStack environment can make this problem worse. Murano is designed to solve
this problem by providing an additional integration layer between third-party components and
OpenStack infrastructure. This makes it possible to provide both
Infrastructure-as-a-Service and Platform-as-a-Service from a single control plane.

For users, the application catalog is a place to �nd and self-provision third-party applications and
services, integrate them into their environment, and track usage information and costs. The single
control plane becomes a single interface from which they can provision an entire fully-functional
cloud-based application environment.

From the third-party tool developer’s perspective, the application catalog provides a way to
publish applications and services, including deployment rules and requirements, suggested
con�guration, output parameters and billing rules. It will also provide a way to track billing and
usage information. In this way, these third party developers can enrich the OpenStack ecosystem
to make it more attractive for users, and users can get more out of their OpenStack clusters more
easily, fostering adoption of OpenStack itself.

Magnum leverages Docker Swarm, Kubernetes, and Mesos as components, but di�ers in that
Magnum also o�ers an asynchronous OpenStack API that uses OpenStack Identity Service
(Keystone), and includes a complete multi-tenancy implementation. It does not perform
orchestration internally, and instead relies on Heat.

The same identity credentials used to create IaaS resources can be used to run containerized
applications using Magnum, via built-in integration with Keystone. Some examples of
advanced features available with Magnum are the ability to scale an application to a speci�ed
number of instances, to cause your application to automatically re-spawn an instance in the
event of a failure, and to pack applications together more tightly than would be possible using
virtual machines.

The second release of Magnum (Kilo-2) is available for download12. It includes signi�cant test
code coverage, multi-tenancy support, scalable bays, support for CoreOS Nodes, 8 bit character
support, and 61 other enhancements, bug �xes, and technical debt elimination.

Magnum is at the point today, prior to Liberty, where OpenStack-based public cloud providers
can start to leverage it. These users are contributing to Magnum, making containers accessible
for individual IT departments later this year and beyond. Experienced users assert it is very
reliable and really helps to run an app in an immutable infrastructure.

Magnum Networking
Magnum leverages OpenStack Networking (Neutron) capability when creating bays. This
allows each node in a bay to communicate with the other nodes. If the Kubernetes bay type is
used, a Flannel overlay network is used which allows Kubernetes to assign IP addresses to
containers in the bay while allowing multihost communication between containers. Work is
currently underway to leverage new networking features from the Docker community
(libnetwork) to provide a native client experience while leveraging OpenStack networking, and
o�er a consistent experience between containers running outside of OpenStack cloud
environments. This capability is expected in the OpenStack Mitaka release timeframe.

Magnum Security and Multi-tenancy
Resources such as containers, services, pods, bays, etc. started by Magnum can only be viewed
and accessed by users of the tenant that created them. Bays are not shared, meaning that
containers will not run on the same kernel as neighboring tenants. This is a key security feature
that allows containers belonging to the same tenant to be tightly packed within the same pods
and bays, but runs separate kernels (in separate Nova Instances) between di�erent tenants.
This is di�erent than using a system like Kubernetes without Magnum, which is intended to be
used only by a single tenant, and leaves the security isolation design up to the implementer.

www.openstack.org

stack®open

14

Kolla comes out of the box as a highly opinionated deployment system meant to work with the
con�guration of four pieces of information. For more experienced operators, Kolla can be
completely customized by con�guration augmentation, enabling an operator to customize their
deployment to suit their needs as their experience with OpenStack increases with the execution
of one operation.

Kolla’s lead container distribution is CentOS but containers are built and tested for CentOS,
Fedora, Oracle Linux, Red Hat Enterperise Linux, and Ubuntu container runtimes in both source
and distro packaging models. Deployment occurs to an operating system that matches the
container run-time operating system to preserve system call, IOCTL, and netlink compatibility.
Deployment to micro-operating systems such as CoreOS, Fedora Atomic, and Red Hat Enterprise
Linux Atomic are planned for the future.

Kolla implements Ansible deployment of the following infrastructure and basic services with a
high availability model using redundancy to protect against faults:

• RabbitMQ
• MariaDB with Galera Replication
• Keepalived
• HAProxy
• Keystone
• Glance
• Magnum

Kolla is ready for evaluation but not deployment by operators. A deployment-ready Kolla is
anxiously awaited by operators worldwide.

For more information or to get involved, please visit: https://wiki.openstack.org/wiki/Kolla
or meet the developers and users on #kolla on Freenode IRC.

Murano
Murano is an OpenStack project that provides an application catalog for app developers and
cloud administrators to publish cloud-ready applications in a browsable, categorized repository
available within OpenStack Dashboard (Horizon); and for administrators to obtain additional apps
easily from public repositories such as the OpenStack Community App Catalog
(apps.openstack.org), Google Container Repository, and Docker Hub/Registry. Murano provides
developers and operators with the ability to control full application lifecycles, while allowing users -
including inexperienced ones - a simple, self-service way of deploying reliable application
environments with the push of a button.

• Nova
• Neutron with both OVS and LinuxBridge support
• Horizon
• Heat
• Cinder
• Swift
• Ceilometer

Social-as-a-Service company Lithium has a VM-based application running on an OpenStack
private cloud today. They are working to transition to a sleeker, container-based model, using
Docker and Kubernetes container orchestration and clustering. Containers make sense for Lithium
because they enable development, testing and deployment on a single, simple and standardized
runtime platform that’s easily and quickly deployed and inherently lightweight: important as the
scale and performance requirements of Lithium’s platform continue growing, and as
formerly-stateful aspects of their architecture evolve towards stateless micro-services. Kubernetes
works for them for similar reasons. And, it o�ers a common scheduler across Lithium’s private and
public clouds, letting them build out a more transparently-integrated hybrid solution on multiple
IaaSs - OpenStack, AWS, and Google Compute Engine. In the future, Lithium wants to explore
bringing OpenStack APIs up into the Kubernetes/Docker layer to create fullstack DevOps tooling.

For more information or to get involved, please visit:
https://wiki.openstack.org/wiki/Murano

Using Magnum provides the same level of security isolation as Nova provides when running
Virtual Machines belonging to di�erent tenants on the same compute nodes.

If Nova is currently trusted to isolate workloads between multiple tenants in a cloud using a
hypervisor, then Magnum can also be trusted to provide equivalent isolation of containers
between multiple tenants. This is because Magnum uses Nova instances to compose bays,
and does not share bays between di�erent tenants.

For more information or to get involved, please visit: https://wiki.openstack.org/wiki/Magnum

Kolla
Deploying and upgrading OpenStack has always been a complex task. With the advent of the
core and projects structure of the OpenStack software13, there is no longer an integrated
OpenStack release. Projects can be approved and released on their own cadence, with most
projects still opting to do releases at the end of the 6-month development cycles. Operators will
be able to select from a number of projects to custom-build their deployment. This introduces
more �exibility and choice but also complexity in deployment and ongoing operations.

Kolla is a new approach to deploying OpenStack within containers that results in new fast, reliable
and composable building blocks. Kolla simpli�es deployment and ongoing operations by
packaging each service, for the most part, as a micro-service in a Docker container.

Containerized micro-services and Ansible orchestration allows operators to upgrade a service by
building a new Docker container and redeploying the system. Di�erent versions and package
mechanisms such as distribution packaging, RDO, and from-source can be supported individually.
Deploying OpenStack with Kolla does not recon�gure anything else in the deployed operating
system, unlike other con�guration management tools, lowering risk. And Kolla containers are easy
to create.

Kolla provides immutability, because the only things that change are the con�guration �les
loaded into a container and how those con�guration changes modify the behavior of the
OpenStack services. This turns OpenStack from an imperative system to a declarative system;
either the container runs or doesn’t. Kolla is implemented with data containers that can be
mounted on the host operating system. For example, databases, OpenStack Image Service
(Glance) information, Nova compute VMs and other persistent data can be stored in data
containers which can be backed up and restored individually, again lowering risk and extending
immutability throughout the OpenStack infrastructure.

Murano thus enables management and self-service delivery both of conventional application
stacks and container oriented environments and PaaS solutions - including Kubernetes, Mesos,
Cloud Foundry, and Swarm, on OpenStack. It can coordinate the use of all the Docker drivers within
the context of an application through Heat or Python plugins. App and services developers use
containers to run services using the container management tools of their choice, and Murano then
acts as a lightweight abstraction so that the developer can provide guidance to the operator about
how to handle app/service lifecycle actions such as upgrade, scale-up/down, backup, and recover.

Murano is available today as OpenStack packages in Juno and Kilo. An organization’s cloud
Application Catalog can be populated by importing Murano packages from a local repository,
or from the OpenStack Community Application Catalog.

Murano environments may be as simple as a single VM or may be complex, multi-tier applications
with auto-scaling and self healing.

Because each application and service de�nition includes all of the information the system needs
for deployment, users will not have to work through various IT departments in order to provision a
cloud service, nor are users required to provide detailed IT speci�cations. They are only required to
provide business and organization requirements.

Installing third party services and applications can be di�cult in any environment, but the dynamic
nature of an OpenStack environment can make this problem worse. Murano is designed to solve
this problem by providing an additional integration layer between third-party components and
OpenStack infrastructure. This makes it possible to provide both
Infrastructure-as-a-Service and Platform-as-a-Service from a single control plane.

For users, the application catalog is a place to �nd and self-provision third-party applications and
services, integrate them into their environment, and track usage information and costs. The single
control plane becomes a single interface from which they can provision an entire fully-functional
cloud-based application environment.

From the third-party tool developer’s perspective, the application catalog provides a way to
publish applications and services, including deployment rules and requirements, suggested
con�guration, output parameters and billing rules. It will also provide a way to track billing and
usage information. In this way, these third party developers can enrich the OpenStack ecosystem
to make it more attractive for users, and users can get more out of their OpenStack clusters more
easily, fostering adoption of OpenStack itself.

Magnum leverages Docker Swarm, Kubernetes, and Mesos as components, but di�ers in that
Magnum also o�ers an asynchronous OpenStack API that uses OpenStack Identity Service
(Keystone), and includes a complete multi-tenancy implementation. It does not perform
orchestration internally, and instead relies on Heat.

The same identity credentials used to create IaaS resources can be used to run containerized
applications using Magnum, via built-in integration with Keystone. Some examples of
advanced features available with Magnum are the ability to scale an application to a speci�ed
number of instances, to cause your application to automatically re-spawn an instance in the
event of a failure, and to pack applications together more tightly than would be possible using
virtual machines.

The second release of Magnum (Kilo-2) is available for download12. It includes signi�cant test
code coverage, multi-tenancy support, scalable bays, support for CoreOS Nodes, 8 bit character
support, and 61 other enhancements, bug �xes, and technical debt elimination.

Magnum is at the point today, prior to Liberty, where OpenStack-based public cloud providers
can start to leverage it. These users are contributing to Magnum, making containers accessible
for individual IT departments later this year and beyond. Experienced users assert it is very
reliable and really helps to run an app in an immutable infrastructure.

Magnum Networking
Magnum leverages OpenStack Networking (Neutron) capability when creating bays. This
allows each node in a bay to communicate with the other nodes. If the Kubernetes bay type is
used, a Flannel overlay network is used which allows Kubernetes to assign IP addresses to
containers in the bay while allowing multihost communication between containers. Work is
currently underway to leverage new networking features from the Docker community
(libnetwork) to provide a native client experience while leveraging OpenStack networking, and
o�er a consistent experience between containers running outside of OpenStack cloud
environments. This capability is expected in the OpenStack Mitaka release timeframe.

Magnum Security and Multi-tenancy
Resources such as containers, services, pods, bays, etc. started by Magnum can only be viewed
and accessed by users of the tenant that created them. Bays are not shared, meaning that
containers will not run on the same kernel as neighboring tenants. This is a key security feature
that allows containers belonging to the same tenant to be tightly packed within the same pods
and bays, but runs separate kernels (in separate Nova Instances) between di�erent tenants.
This is di�erent than using a system like Kubernetes without Magnum, which is intended to be
used only by a single tenant, and leaves the security isolation design up to the implementer.

www.openstack.org

stack®open

15

Kolla comes out of the box as a highly opinionated deployment system meant to work with the
con�guration of four pieces of information. For more experienced operators, Kolla can be
completely customized by con�guration augmentation, enabling an operator to customize their
deployment to suit their needs as their experience with OpenStack increases with the execution
of one operation.

Kolla’s lead container distribution is CentOS but containers are built and tested for CentOS,
Fedora, Oracle Linux, Red Hat Enterperise Linux, and Ubuntu container runtimes in both source
and distro packaging models. Deployment occurs to an operating system that matches the
container run-time operating system to preserve system call, IOCTL, and netlink compatibility.
Deployment to micro-operating systems such as CoreOS, Fedora Atomic, and Red Hat Enterprise
Linux Atomic are planned for the future.

Kolla implements Ansible deployment of the following infrastructure and basic services with a
high availability model using redundancy to protect against faults:

• RabbitMQ
• MariaDB with Galera Replication
• Keepalived
• HAProxy
• Keystone
• Glance
• Magnum

Kolla is ready for evaluation but not deployment by operators. A deployment-ready Kolla is
anxiously awaited by operators worldwide.

For more information or to get involved, please visit: https://wiki.openstack.org/wiki/Kolla
or meet the developers and users on #kolla on Freenode IRC.

Murano
Murano is an OpenStack project that provides an application catalog for app developers and
cloud administrators to publish cloud-ready applications in a browsable, categorized repository
available within OpenStack Dashboard (Horizon); and for administrators to obtain additional apps
easily from public repositories such as the OpenStack Community App Catalog
(apps.openstack.org), Google Container Repository, and Docker Hub/Registry. Murano provides
developers and operators with the ability to control full application lifecycles, while allowing users -
including inexperienced ones - a simple, self-service way of deploying reliable application
environments with the push of a button.

Social-as-a-Service company Lithium has a VM-based application running on an OpenStack
private cloud today. They are working to transition to a sleeker, container-based model, using
Docker and Kubernetes container orchestration and clustering. Containers make sense for Lithium
because they enable development, testing and deployment on a single, simple and standardized
runtime platform that’s easily and quickly deployed and inherently lightweight: important as the
scale and performance requirements of Lithium’s platform continue growing, and as
formerly-stateful aspects of their architecture evolve towards stateless micro-services. Kubernetes
works for them for similar reasons. And, it o�ers a common scheduler across Lithium’s private and
public clouds, letting them build out a more transparently-integrated hybrid solution on multiple
IaaSs - OpenStack, AWS, and Google Compute Engine. In the future, Lithium wants to explore
bringing OpenStack APIs up into the Kubernetes/Docker layer to create fullstack DevOps tooling.

For more information or to get involved, please visit:
https://wiki.openstack.org/wiki/Murano

Using Magnum provides the same level of security isolation as Nova provides when running
Virtual Machines belonging to di�erent tenants on the same compute nodes.

If Nova is currently trusted to isolate workloads between multiple tenants in a cloud using a
hypervisor, then Magnum can also be trusted to provide equivalent isolation of containers
between multiple tenants. This is because Magnum uses Nova instances to compose bays,
and does not share bays between di�erent tenants.

For more information or to get involved, please visit: https://wiki.openstack.org/wiki/Magnum

Kolla
Deploying and upgrading OpenStack has always been a complex task. With the advent of the
core and projects structure of the OpenStack software13, there is no longer an integrated
OpenStack release. Projects can be approved and released on their own cadence, with most
projects still opting to do releases at the end of the 6-month development cycles. Operators will
be able to select from a number of projects to custom-build their deployment. This introduces
more �exibility and choice but also complexity in deployment and ongoing operations.

Kolla is a new approach to deploying OpenStack within containers that results in new fast, reliable
and composable building blocks. Kolla simpli�es deployment and ongoing operations by
packaging each service, for the most part, as a micro-service in a Docker container.

Containerized micro-services and Ansible orchestration allows operators to upgrade a service by
building a new Docker container and redeploying the system. Di�erent versions and package
mechanisms such as distribution packaging, RDO, and from-source can be supported individually.
Deploying OpenStack with Kolla does not recon�gure anything else in the deployed operating
system, unlike other con�guration management tools, lowering risk. And Kolla containers are easy
to create.

Kolla provides immutability, because the only things that change are the con�guration �les
loaded into a container and how those con�guration changes modify the behavior of the
OpenStack services. This turns OpenStack from an imperative system to a declarative system;
either the container runs or doesn’t. Kolla is implemented with data containers that can be
mounted on the host operating system. For example, databases, OpenStack Image Service
(Glance) information, Nova compute VMs and other persistent data can be stored in data
containers which can be backed up and restored individually, again lowering risk and extending
immutability throughout the OpenStack infrastructure.

Murano thus enables management and self-service delivery both of conventional application
stacks and container oriented environments and PaaS solutions - including Kubernetes, Mesos,
Cloud Foundry, and Swarm, on OpenStack. It can coordinate the use of all the Docker drivers within
the context of an application through Heat or Python plugins. App and services developers use
containers to run services using the container management tools of their choice, and Murano then
acts as a lightweight abstraction so that the developer can provide guidance to the operator about
how to handle app/service lifecycle actions such as upgrade, scale-up/down, backup, and recover.

Murano is available today as OpenStack packages in Juno and Kilo. An organization’s cloud
Application Catalog can be populated by importing Murano packages from a local repository,
or from the OpenStack Community Application Catalog.

Murano environments may be as simple as a single VM or may be complex, multi-tier applications
with auto-scaling and self healing.

Because each application and service de�nition includes all of the information the system needs
for deployment, users will not have to work through various IT departments in order to provision a
cloud service, nor are users required to provide detailed IT speci�cations. They are only required to
provide business and organization requirements.

Installing third party services and applications can be di�cult in any environment, but the dynamic
nature of an OpenStack environment can make this problem worse. Murano is designed to solve
this problem by providing an additional integration layer between third-party components and
OpenStack infrastructure. This makes it possible to provide both
Infrastructure-as-a-Service and Platform-as-a-Service from a single control plane.

For users, the application catalog is a place to �nd and self-provision third-party applications and
services, integrate them into their environment, and track usage information and costs. The single
control plane becomes a single interface from which they can provision an entire fully-functional
cloud-based application environment.

From the third-party tool developer’s perspective, the application catalog provides a way to
publish applications and services, including deployment rules and requirements, suggested
con�guration, output parameters and billing rules. It will also provide a way to track billing and
usage information. In this way, these third party developers can enrich the OpenStack ecosystem
to make it more attractive for users, and users can get more out of their OpenStack clusters more
easily, fostering adoption of OpenStack itself.

Magnum leverages Docker Swarm, Kubernetes, and Mesos as components, but di�ers in that
Magnum also o�ers an asynchronous OpenStack API that uses OpenStack Identity Service
(Keystone), and includes a complete multi-tenancy implementation. It does not perform
orchestration internally, and instead relies on Heat.

The same identity credentials used to create IaaS resources can be used to run containerized
applications using Magnum, via built-in integration with Keystone. Some examples of
advanced features available with Magnum are the ability to scale an application to a speci�ed
number of instances, to cause your application to automatically re-spawn an instance in the
event of a failure, and to pack applications together more tightly than would be possible using
virtual machines.

The second release of Magnum (Kilo-2) is available for download12. It includes signi�cant test
code coverage, multi-tenancy support, scalable bays, support for CoreOS Nodes, 8 bit character
support, and 61 other enhancements, bug �xes, and technical debt elimination.

Magnum is at the point today, prior to Liberty, where OpenStack-based public cloud providers
can start to leverage it. These users are contributing to Magnum, making containers accessible
for individual IT departments later this year and beyond. Experienced users assert it is very
reliable and really helps to run an app in an immutable infrastructure.

Magnum Networking
Magnum leverages OpenStack Networking (Neutron) capability when creating bays. This
allows each node in a bay to communicate with the other nodes. If the Kubernetes bay type is
used, a Flannel overlay network is used which allows Kubernetes to assign IP addresses to
containers in the bay while allowing multihost communication between containers. Work is
currently underway to leverage new networking features from the Docker community
(libnetwork) to provide a native client experience while leveraging OpenStack networking, and
o�er a consistent experience between containers running outside of OpenStack cloud
environments. This capability is expected in the OpenStack Mitaka release timeframe.

Magnum Security and Multi-tenancy
Resources such as containers, services, pods, bays, etc. started by Magnum can only be viewed
and accessed by users of the tenant that created them. Bays are not shared, meaning that
containers will not run on the same kernel as neighboring tenants. This is a key security feature
that allows containers belonging to the same tenant to be tightly packed within the same pods
and bays, but runs separate kernels (in separate Nova Instances) between di�erent tenants.
This is di�erent than using a system like Kubernetes without Magnum, which is intended to be
used only by a single tenant, and leaves the security isolation design up to the implementer.

www.openstack.org

stack®open

16

Kolla comes out of the box as a highly opinionated deployment system meant to work with the
con�guration of four pieces of information. For more experienced operators, Kolla can be
completely customized by con�guration augmentation, enabling an operator to customize their
deployment to suit their needs as their experience with OpenStack increases with the execution
of one operation.

Kolla’s lead container distribution is CentOS but containers are built and tested for CentOS,
Fedora, Oracle Linux, Red Hat Enterperise Linux, and Ubuntu container runtimes in both source
and distro packaging models. Deployment occurs to an operating system that matches the
container run-time operating system to preserve system call, IOCTL, and netlink compatibility.
Deployment to micro-operating systems such as CoreOS, Fedora Atomic, and Red Hat Enterprise
Linux Atomic are planned for the future.

Kolla implements Ansible deployment of the following infrastructure and basic services with a
high availability model using redundancy to protect against faults:

• RabbitMQ
• MariaDB with Galera Replication
• Keepalived
• HAProxy
• Keystone
• Glance
• Magnum

Kolla is ready for evaluation but not deployment by operators. A deployment-ready Kolla is
anxiously awaited by operators worldwide.

For more information or to get involved, please visit: https://wiki.openstack.org/wiki/Kolla
or meet the developers and users on #kolla on Freenode IRC.

Murano
Murano is an OpenStack project that provides an application catalog for app developers and
cloud administrators to publish cloud-ready applications in a browsable, categorized repository
available within OpenStack Dashboard (Horizon); and for administrators to obtain additional apps
easily from public repositories such as the OpenStack Community App Catalog
(apps.openstack.org), Google Container Repository, and Docker Hub/Registry. Murano provides
developers and operators with the ability to control full application lifecycles, while allowing users -
including inexperienced ones - a simple, self-service way of deploying reliable application
environments with the push of a button.

Social-as-a-Service company Lithium has a VM-based application running on an OpenStack
private cloud today. They are working to transition to a sleeker, container-based model, using
Docker and Kubernetes container orchestration and clustering. Containers make sense for Lithium
because they enable development, testing and deployment on a single, simple and standardized
runtime platform that’s easily and quickly deployed and inherently lightweight: important as the
scale and performance requirements of Lithium’s platform continue growing, and as
formerly-stateful aspects of their architecture evolve towards stateless micro-services. Kubernetes
works for them for similar reasons. And, it o�ers a common scheduler across Lithium’s private and
public clouds, letting them build out a more transparently-integrated hybrid solution on multiple
IaaSs - OpenStack, AWS, and Google Compute Engine. In the future, Lithium wants to explore
bringing OpenStack APIs up into the Kubernetes/Docker layer to create fullstack DevOps tooling.

For more information or to get involved, please visit:
https://wiki.openstack.org/wiki/Murano

Using Magnum provides the same level of security isolation as Nova provides when running
Virtual Machines belonging to di�erent tenants on the same compute nodes.

If Nova is currently trusted to isolate workloads between multiple tenants in a cloud using a
hypervisor, then Magnum can also be trusted to provide equivalent isolation of containers
between multiple tenants. This is because Magnum uses Nova instances to compose bays,
and does not share bays between di�erent tenants.

For more information or to get involved, please visit: https://wiki.openstack.org/wiki/Magnum

Kolla
Deploying and upgrading OpenStack has always been a complex task. With the advent of the
core and projects structure of the OpenStack software13, there is no longer an integrated
OpenStack release. Projects can be approved and released on their own cadence, with most
projects still opting to do releases at the end of the 6-month development cycles. Operators will
be able to select from a number of projects to custom-build their deployment. This introduces
more �exibility and choice but also complexity in deployment and ongoing operations.

Kolla is a new approach to deploying OpenStack within containers that results in new fast, reliable
and composable building blocks. Kolla simpli�es deployment and ongoing operations by
packaging each service, for the most part, as a micro-service in a Docker container.

Containerized micro-services and Ansible orchestration allows operators to upgrade a service by
building a new Docker container and redeploying the system. Di�erent versions and package
mechanisms such as distribution packaging, RDO, and from-source can be supported individually.
Deploying OpenStack with Kolla does not recon�gure anything else in the deployed operating
system, unlike other con�guration management tools, lowering risk. And Kolla containers are easy
to create.

Kolla provides immutability, because the only things that change are the con�guration �les
loaded into a container and how those con�guration changes modify the behavior of the
OpenStack services. This turns OpenStack from an imperative system to a declarative system;
either the container runs or doesn’t. Kolla is implemented with data containers that can be
mounted on the host operating system. For example, databases, OpenStack Image Service
(Glance) information, Nova compute VMs and other persistent data can be stored in data
containers which can be backed up and restored individually, again lowering risk and extending
immutability throughout the OpenStack infrastructure.

Murano thus enables management and self-service delivery both of conventional application
stacks and container oriented environments and PaaS solutions - including Kubernetes, Mesos,
Cloud Foundry, and Swarm, on OpenStack. It can coordinate the use of all the Docker drivers within
the context of an application through Heat or Python plugins. App and services developers use
containers to run services using the container management tools of their choice, and Murano then
acts as a lightweight abstraction so that the developer can provide guidance to the operator about
how to handle app/service lifecycle actions such as upgrade, scale-up/down, backup, and recover.

Murano is available today as OpenStack packages in Juno and Kilo. An organization’s cloud
Application Catalog can be populated by importing Murano packages from a local repository,
or from the OpenStack Community Application Catalog.

Murano environments may be as simple as a single VM or may be complex, multi-tier applications
with auto-scaling and self healing.

Because each application and service de�nition includes all of the information the system needs
for deployment, users will not have to work through various IT departments in order to provision a
cloud service, nor are users required to provide detailed IT speci�cations. They are only required to
provide business and organization requirements.

Installing third party services and applications can be di�cult in any environment, but the dynamic
nature of an OpenStack environment can make this problem worse. Murano is designed to solve
this problem by providing an additional integration layer between third-party components and
OpenStack infrastructure. This makes it possible to provide both
Infrastructure-as-a-Service and Platform-as-a-Service from a single control plane.

For users, the application catalog is a place to �nd and self-provision third-party applications and
services, integrate them into their environment, and track usage information and costs. The single
control plane becomes a single interface from which they can provision an entire fully-functional
cloud-based application environment.

From the third-party tool developer’s perspective, the application catalog provides a way to
publish applications and services, including deployment rules and requirements, suggested
con�guration, output parameters and billing rules. It will also provide a way to track billing and
usage information. In this way, these third party developers can enrich the OpenStack ecosystem
to make it more attractive for users, and users can get more out of their OpenStack clusters more
easily, fostering adoption of OpenStack itself.

®

Conclusion and Next Steps
OpenStack, due to its exceptional �exibility, remains unparalleled in its ability to encompass
emerging technologies. OpenStack users are discovering that there’s value to one platform for
virtual machines, containers, and bare metal. As OpenStack continues to evolve, it will deepen
and mature its support for containers as well as other emerging capabilities.

If you are using OpenStack to manage your IT infrastructure, and are interested in exploring
containers, current maturing OpenStack projects can help. Magnum and Murano provide state
of the art services for running applications, whether from an integrated catalog or external
repository, and Kolla is evolving into what many believe is the future of OpenStack deployment.
They will continue to mature as container technology advances.

For those who want to tap into OpenStack software‘s container capabilities now, the services are
available for exploration.

To learn more, visit each projects’ wiki or join the Containers team at:
https://wiki.openstack.org/wiki/ContainersTeam

stack®open

www.openstack.org

17

OpenStack is a registered trademark of the OpenStack Foundation in the United States, other countries or both.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows and Hyper-V are trademarks of Microsoft Corporation in the United States, other countries,
or both.

VMware and VMware vSphere are trademarks and registered trademarks of VMware, Inc. in the United States
and certain other countries.

Other product and service names might be trademarks of other companies.

www.openstack.org

