
Irena Berezovsky,
Senior Architect,
Midokura

QoS - Neutron N00bie

Livnat Peer,
Senior Engineering Manager,
Red Hat

David Slama,
Software Director of Cloud
and Network Solutions,
Mellanox

Agenda

● Network QoS
● QoS in Neutron
● QoS service design
● Use Case
● Future Work

Network QoS

The ability to guarantee certain network
requirements like bandwidth, latency, jitter,
and reliability in order to satisfy a Service

Level Agreement (SLA) between an
application provider and end users.

QoS

● No industry standard - multiple ways to express
bandwidth guarantees
○ OVS - min, max
○ Linux tc - rate, crate, burst, cburst

● Our goals is to enable the cloud administrator to-
○ Control the network resources
○ Tune the network to specific application type
○ Provide different SLAs

The Noisy Neighbor Problem

add image

QoS in Neutron - Phase 1

● Adding generic infrastructure that would be
extensible for additional use cases

● Scope
○ The current scope was the traffic within the hypervisor
○ Only traffic that leaves the VM (VM-egress)
○ No integration with Nova scheduler

Sprint in Red Hat’s TLV office

QoS API & Data Model - Policy

● A policy is a collection of rules that can be applied on a neutron port
● Policy attributes: Id, Name, Description, Shared, Tenant-Id

● Policy can be associated with Neutron port or network

neutron qos-policy-create ‘platinum’ \

 --description ‘platinum QoS - charge a lot of $$’

neutron port-update <port id> --qos-policy ‘platinum’

neutron net-update <net name> --qos-policy ‘platinum’

QoS API & Data Model - Rules

● Rule is the building block of a policy
● Abstract QoS Rule
● QoS Bandwidth Limit Rule

○ max-kbps
○ max-burst-kbps

● Future - QoS DSCP Rule
○ dscp-mark

neutron qos-bandwidth-limit-rule-create <policy name> \
--max-kbps 3000 \
--max-burst-kbps 300

Data Model - Summary

1:1

Workflow

● Typical workflow
○ Creating a policy
○ Adding rules to the policy
○ Associating the policy with a network or a port

● permissions model
○ By default only cloud admin can create a QoS policy
○ Shared vs. non-shared policy
○ The default behaviour can be overridden by changing the policy.json file

● Changes to the Policy immediately propagate to the ports
● Off by default

○ most of the pieces won’t be activated unless explicitly installed, which makes it very low
risk of breaking anything for anyone not using QoS

OVS QoS support

VM-ingress == Bridge-egress
VM-egress == Bridge-ingress

Ingress and egress are from the Bridge
perspective
● Policing for Ingress Traffic

○ drops packets received in excess of the
configured rate

● Shaping for Egress Traffic
○ queues packets received in excess of the

configured rate

● Limit VM egress traffic bandwidth by applying
ingress policing settings on OVS port
interface

QoS Rate Limit with OVS

neutron qos-bandwidth-limit-rule-create <policy name> \
--max-kbps 3000 \
--max-burst-kbps 300

ovs-vsctl set interface tap1 ingress_policing_rate=3000

ovs-vsctl set interface tap1 ingress_policing_burst=300

● Single Root IO Virtualization - allows a PCIe
device to appear as multiple separate PCIe
devices (Virtual Functions)

● SR-IOV device can share a single physical port
with multiple VMs

● Virtual Functions have near-native performance
and provide better performance than para-
virtualized drivers and emulated access

● OpenStack supports SR-IOV VF direct
passthrough since Juno

SR-IOV

● Limit VM egress traffic bandwidth by applying
rate limit settings on Virtual Function

Rate Limit with SR-IOV

neutron qos-bandwidth-limit-rule-create <policy name> \
--max-kbps 3000 \
--max-burst-kbps 300

ip link set eth0 vf 1 rate 3

QoS Neutron Service Design

QoS Neutron Service Design

QoS API Extensibility

Add QoS Rule Type

Neutron Server

● Define new Rule Type Resource
● Add CRUD methods to QoS Plugin
● Define new DB Model
● Define new versioned object
● Bump QoS Policy version

Neutron Client

● Add new Rule Type path
● Add CRUD handlers to neutron-cli shell

QoS Service Extensibility

Support QoS API with vendor
plugin

● Declare QoS support rules
● Add new Notification Driver

for QoS create / delete /
update ops.

● Add QoS Resource Extension
to Vendor Plugin to delegate
QoS policy port mapping to
QoS Advanced Service Plugin

QoS L2 Agent Extensibility

Support QoS with L2 Agent

● Add QoS Agent Driver to implement
Driver API for L2 Agent managed
virtual switch technology

ML2 - Attach QoS Policy

ML2 QoS Policy Update

Customer Requirements

▪ Multiple tenants, each tenant with different QOS requirements

▪ High Availability for network connectivity

▪ Each tenant can create one or more containers

▪ Each container is used to run an application (e.g. VNF)

▪ Network Auto Provisioning (Segmentation and Policy)

▪ Option to reflect the QOS settings from the TOR the VM

QoS – Real Life (Customer) Use Case

Host Side

• Multiple tenants, each with a single VM

• Each tenant has multiple applications

• Each application runs in a container

• Each VM – per each tenant, has its own
bandwidth share (via rate limiting each VM
and ensuring the total is less than the link
BW.

QoS – Real Life (Customer) Use Case

Data Network

SR-IOV NIC
VF1 VF2

Hypervisor

Eth0

C1 C2 C3

VM1
Eth0

C1 C2 C3

VM2
Eth0

Network Side

• ML2 SDN Plugin sends data regarding
port/network/binding (see next slide)

• ML2 SDN Plugin sends data regarding the
Policy (see next slide)

• Reflecting QOS settings on the TOR switch
towards the VM

QoS – Real Life (Customer) Use Case

 configure VLAN
And QOS on TOR

Network

Network Software

Neutron

SDN ML2 Plugin

Network Side

• VF LAG for Network HA

• ML2 SDN Plugin sends data regarding
port/network/binding

• ML2 SDN Plugin sends data regarding the
Policy

• Adding QOS to TOR switch and (ingress
policy)

QoS – Real Life (Customer) Use Case

NIC

Host

Virtual Function

VM

VF driver

Virtual Function

Port 1 Port 2

LAG

Future Work

● Marking
○ DSCP Marking, https://review.openstack.org/#/c/190285/25/specs/mitaka/ml2-ovs-qos-

with-dscp.rst
○ VLAN 802.1p, https://bugs.launchpad.net/neutron/+bug/1505631
○ IPv6 Traffic Class

● Linux Bridge based implementation -
○ https://review.openstack.org/#/c/236210/

● Traffic classifiers
○ https://review.openstack.org/#/c/190463/

● RBAC (Role Based Access Control) integration
● Bandwidth guarantee

○ Nova scheduler integration
● Upgrade - preliminary requirement

https://review.openstack.org/#/c/190285/25/specs/mitaka/ml2-ovs-qos-with-dscp.rst
https://review.openstack.org/#/c/190285/25/specs/mitaka/ml2-ovs-qos-with-dscp.rst
https://review.openstack.org/#/c/190285/25/specs/mitaka/ml2-ovs-qos-with-dscp.rst
https://bugs.launchpad.net/neutron/+bug/1505631
https://review.openstack.org/#/c/236210/
https://review.openstack.org/#/c/236210/
https://review.openstack.org/#/c/190463/
https://review.openstack.org/#/c/190463/

Q&A

Resources

● Neutron QoS API Extension - Neutron spec
● Ajo’s Blog - Neutron Quality of Service coding sprint
● DSCP Marking - Neutron spec
● Add Classifier Resource - Neutron spec
● User Guide for QoS
● The noisy neighbor problem

https://review.openstack.org/#/c/88599
https://review.openstack.org/#/c/88599
http://www.ajo.es/post/123458887419/neutron-quality-of-service-coding-sprint
http://www.ajo.es/post/123458887419/neutron-quality-of-service-coding-sprint
https://review.openstack.org/#/c/190285/25/specs/mitaka/ml2-ovs-qos-with-dscp.rst
https://review.openstack.org/#/c/190285/25/specs/mitaka/ml2-ovs-qos-with-dscp.rst
https://review.openstack.org/#/c/190463/
https://review.openstack.org/#/c/190463/
http://docs.openstack.org/networking-guide/adv_config_qos.htm
http://docs.openstack.org/networking-guide/adv_config_qos.htm
http://searchcloudcomputing.techtarget.com/definition/noisy-neighbor-cloud-computing-performance
http://searchcloudcomputing.techtarget.com/definition/noisy-neighbor-cloud-computing-performance

Configuration to enable neutron QoS

● On server side
○ enable qos service in service_plugins;
○ set the needed notification_drivers in [qos] section (message_queue is the

default);
○ for ml2, add 'qos' to extension_drivers in [ml2] section.

● On L2 agent side
○ add 'qos' to extensions in [agent] section.

● To enable QoS in devstack, update local.conf
○ enable_plugin neutron git://git.openstack.org/openstack/neutron
○ enable_service q-qos

Infra Changes

● Generic RPC Callback
● L2 Agent Extensions Manager & Agent Extensions
● Oslo Versioned Objects
● Core Resource Extensions

Message Example

"network_qos_policy": {
 "versioned_object.version": "1.0",
 "versioned_object.name": "QosPolicy",
 "versioned_object.data": {
 "description": "",
 "rules": [
 {
 "versioned_object.version": "1.0",
 "versioned_object.name": "QosBandwidthLimitRule",
 "versioned_object.data": {
 "max_kbps": 10000,
 "id": "eb48ade9-4a63-4307-acc2-87a31ae68346",
 "max_burst_kbps": 0,
 "qos_policy_id": "7bba8b67-bd58-4370-b524-f58ae4ad50e5"
 },
 "versioned_object.namespace": "versionedobjects"

QoS – Real Life (Customer) Use Case

 configure VLAN
And QOS on TOR

Network

Network Software

Neutron

SDN ML2 Plugin

