

Going brokerless:
The transition from Qpid to 0mq

Paul Mathews, Systems Architect
EIG/Bluehost

OpenStack Summit, November 2013

RPC Messaging

● One major limiting factor we encountered when
scaling OpenStack

● Many services depend upon a reliable
messaging system
– Compute

– Neutron

– Conductor

– Celiometer

– VNC

– Cells

Why Qpid?

● Used by Redhat
● Clustering

– Offered the “possibility” of horizontal scaling

– Removed in 0.18

Qpid experience

● Single instance was not reliable
– Unable to scale

– Single point of failure

● Compute connections to broker are lost
– Restart of compute service required

● Problematic due to missed messages

RabbitMQ?

● Similar design as Qpid
● Broker model has the same drawbacks
● Problematic experiences from other users

Possible solutions for scaling broker

● Cells
● Clustering/HA

Cells

● Cells do not address
performance issues

● Cells lower the load
on individual brokers

● Magnify problems
when they occur by
chaining services

AMQP
Broker

API Cell

AMQP
Broker

Child Cell

AMQP
Broker

Grandchild Cell

AMQP
Broker

Child Cell

AMQP
Broker

Grandchild Cell

Clustering/HA

● Qpid
– Clustering is slow, and unreliable

– Node sync causes problems

– New HA module is active/passive

● RabbitMQ
– Does have an active/active (HA) mode

– Complicated setup, many moving pieces

● Scaling a broker is not practical
– At best, minimal gains with addition of nodes

– Loss of nodes causes further issues

No more brokers!!!

● Brokers are a single
point of failure

● Not horizontally
scalable

● Reduced reliability
with addition of nodes

● HA provides minimal
benefit, and adds
complexity

Requirements for messaging

● No single point of failure
● Horizontally scalable
● Reliable at scale

● No more centralized broker
– Receiver on each node

– Routing handled by matchmaker

{
"scheduler": ["sched1", "sched2"],
"consoleauth": ["cauth1", "cauth2"]

}

Messaging topologies

Broker

Compute
Console

auth

Brokers are limited to
a star topology

ZeroMQ is a partially-
connected mesh

Conductor

Compute

APIScheduler

ComputeCeliometer

Compute
Console

auth

Conductor

Compute

APIScheduler

ComputeCeliometer

Flexibility

● Brokers have a rigidly defined structure
– Queues, exchanges, subscriptions, fanouts

● ZeroMQ has four simple methods
– Connect, bind, send, recv

● ZeroMQ lets us define our own messaging
models

Lightweight messaging

● ZeroMQ uses simple socket connections
– Low resource utilization

● FAST

RPC Cast Performance
(on a single-core VM)

ZeroMQ Qpid RabbitMQ
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Casts/Second

M
or

e
is

 b
et

te
r

ZeroMQ Configuration

● Edit nova.conf to use zmq

● Configure matchmaker file

● Start zmq-receiver

{
"scheduler": ["sched1", "sched2"],
"consoleauth": ["cauth1", "cauth2"]

}

rpc_backend = nova.openstack.common.rpc.impl_zmq
rpc_zmq_matchmaker = nova.openstack.common.rpc.matchmaker.MatchMakerRing
matchmaker_ringfile = /etc/nova/matchmaker.json
rpc_zmq_ipc_dir = /var/run/zeromq

RPC Migration

● You can't get there from here!
– No easy way to move between messaging systems

– No logical divisions

● Only one backend allowed
– All or nothing switch

We need a new solution

● Moving between messaging systems is painful
– Prior strategy will not work

● Tens of thousands of nodes to migrate
● Need to migrate with little or no downtime
● Rollout must allow deployment to individual

servers

Dual messaging backends

● Nodes use both Qpid and ZeroMQ messaging
backends concurrently

● Code can be rolled out without affecting
behavior, and enabled later
– Change config, and start the ZeroMQ receiver

● Once dual backends are enabled, ZeroMQ is
attempted first, then fails over to Qpid.

NO

Compute2

Dual message backends

Controller
Nodes

Compute1

Qpid

Outgoing message
to Compute1

 ZMQ receiver lis
tening?

Request

ZMQ
Receiver

1. Deploy config to controller nodes

YES
Compute2

Dual message backends

Controller
Nodes

ZMQ
Receiver

Compute1

Qpid

Outgoing message
to Compute2

Request

ZMQ
Receiver

1. Deploy config to controller nodes

 ZMQ receiver listening?

2. Deploy config to compute nodes

Compute2

Dual message backends

Controller
Nodes

ZMQ
Receiver

Compute1

Qpid

ZMQ
Receiver

1. Deploy config to controller nodes

2. Deploy config to compute nodes

Controller
Node

 Call

Outgoing message to
Compute2 via Qpid

Configuring dual backends

● Change rpc_backend to impl_zmq, but retain
qpid_hostname setting

● Nodes will leverage the qpid_hostname value
and connect to Qpid, but will attempt delivery
via ZeroMQ first

● Once switched, nodes will accept incoming
messages from either Qpid or ZeroMQ

qpid_hostname = qpid1
rpc_backend = nova.openstack.common.rpc.impl_zmq
rpc_zmq_matchmaker = nova.openstack.common.rpc.matchmaker.MatchMakerRing
matchmaker_ringfile = /etc/nova/matchmaker.json
rpc_zmq_ipc_dir = /var/run/zeromq

Migrating to ZeroMQ

● Dual backend code meant minimal downtime
● Migration was smooth, without unexpected

losses in messaging
● Connection checks to the ZeroMQ receiver do

not seem to cause undue stress to nodes

ZeroMQ in production

● More reliable than a broker
● Faster than a broker
● Solves scalability issues

Lingering issues

● Occasionally nova-compute stops processing
queued messages

Dual backend code

● https://github.com/paulmathews/nova

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

