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RPC Messaging

● One major limiting factor we encountered when 
scaling OpenStack

● Many services depend upon a reliable 
messaging system
– Compute

– Neutron

– Conductor

– Celiometer

– VNC

– Cells



  

Why Qpid?

● Used by Redhat
● Clustering

– Offered the “possibility” of horizontal scaling

– Removed in 0.18



  

Qpid experience

● Single instance was not reliable
– Unable to scale

– Single point of failure

● Compute connections to broker are lost
– Restart of compute service required

● Problematic due to missed messages



  

RabbitMQ?

● Similar design as Qpid
● Broker model has the same drawbacks
● Problematic experiences from other users



  

Possible solutions for scaling broker

● Cells
● Clustering/HA



  

Cells

● Cells do not address 
performance issues

● Cells lower the load 
on individual brokers

● Magnify problems 
when they occur by 
chaining services 
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Clustering/HA

● Qpid
– Clustering is slow, and unreliable

– Node sync causes problems

– New HA module is active/passive

● RabbitMQ
– Does have an active/active (HA) mode

– Complicated setup, many moving pieces  

● Scaling a broker is not practical
– At best, minimal gains with addition of nodes

– Loss of nodes causes further issues



  

No more brokers!!!

● Brokers are a single 
point of failure

● Not horizontally 
scalable

● Reduced reliability 
with addition of nodes

● HA provides minimal 
benefit, and adds 
complexity



  

Requirements for messaging

● No single point of failure
● Horizontally scalable
● Reliable at scale



  

● No more centralized broker
– Receiver on each node

– Routing handled by matchmaker

 

{
"scheduler": [ "sched1", "sched2" ],
"consoleauth": [ "cauth1", "cauth2" ]

}



  

Messaging topologies
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Flexibility

● Brokers have a rigidly defined structure
– Queues, exchanges, subscriptions, fanouts

● ZeroMQ has four simple methods
– Connect, bind, send, recv

● ZeroMQ lets us define our own messaging 
models



  

Lightweight messaging

● ZeroMQ uses simple socket connections
– Low resource utilization

● FAST



  

RPC Cast Performance
(on a single-core VM)
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ZeroMQ Configuration

● Edit nova.conf to use zmq

● Configure matchmaker file

● Start zmq-receiver

{
"scheduler": [ "sched1", "sched2" ],
"consoleauth": [ "cauth1", "cauth2" ]

}

rpc_backend = nova.openstack.common.rpc.impl_zmq
rpc_zmq_matchmaker = nova.openstack.common.rpc.matchmaker.MatchMakerRing
matchmaker_ringfile = /etc/nova/matchmaker.json
rpc_zmq_ipc_dir = /var/run/zeromq



  

RPC Migration

● You can't get there from here!
– No easy way to move between messaging systems

– No logical divisions

● Only one backend allowed
– All or nothing switch



  

We need a new solution

● Moving between messaging systems is painful
– Prior strategy will not work

● Tens of thousands of nodes to migrate
● Need to migrate with little or no downtime
● Rollout must allow deployment to individual 

servers



  

Dual messaging backends

● Nodes use both Qpid and ZeroMQ messaging 
backends concurrently

● Code can be rolled out without affecting 
behavior, and enabled later
– Change config, and start the ZeroMQ receiver

● Once dual backends are enabled, ZeroMQ is 
attempted first, then fails over to Qpid.
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Configuring dual backends

● Change rpc_backend to impl_zmq, but retain 
qpid_hostname setting

● Nodes will leverage the qpid_hostname value 
and connect to Qpid, but will attempt delivery 
via ZeroMQ first

● Once switched, nodes will accept incoming 
messages from either Qpid or ZeroMQ

qpid_hostname = qpid1
rpc_backend = nova.openstack.common.rpc.impl_zmq
rpc_zmq_matchmaker = nova.openstack.common.rpc.matchmaker.MatchMakerRing
matchmaker_ringfile = /etc/nova/matchmaker.json
rpc_zmq_ipc_dir = /var/run/zeromq



  

Migrating to ZeroMQ

● Dual backend code meant minimal downtime
● Migration was smooth, without unexpected 

losses in messaging
● Connection checks to the ZeroMQ receiver do 

not seem to cause undue stress to nodes



  

ZeroMQ in production

● More reliable than a broker
● Faster than a broker
● Solves scalability issues



  

Lingering issues

● Occasionally nova-compute stops processing 
queued messages



  

Dual backend code

● https://github.com/paulmathews/nova



  

Questions?
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